检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:程建刚 毕凤荣[1] 张立鹏[2] 李鑫 杨晓[1] 汤代杰 CHENG Jiangang;BI Fengrong;ZHANG Lipeng;LI Xin;YANG Xiao;TANG Daijie(State Key Laboratory of Engines,Tianjin University,Tianjin 300072,China;Tianjin Internal Combustion Engine Research Institute,Tianjin 300072,China)
机构地区:[1]天津大学内燃机燃烧学国家重点实验室,天津300072 [2]天津内燃机研究所,天津300072
出 处:《振动与冲击》2022年第10期8-15,共8页Journal of Vibration and Shock
基 金:天津市自然科学基金(18JCYBJC20000)。
摘 要:高效、准确的故障诊断可以提高柴油机的安全性和可靠性。传统机械故障诊断方法中人工参与程度过高,对识别结果带来诸多不确定性。针对这一问题,提出一种基于多重注意力卷积神经网络(multiple attention convolutional neural networks,MACNN)的端到端故障诊断方法。该方法采用多层卷积神经网络(convolutional neural networks,CNN)结合卷积注意力模块(convolutional block attention module,CBAM)对原始时域数据进行特征提取;然后,对多维卷积输出特征图进行重组以保留其序列信息;最后,直接采用序列注意力机制完成序列特征的学习。经采用实测柴油机缸盖振动信号数据进行验证后表明:面对8分类柴油机故障数据集,MACNN能够达到97.88%的识别准确率,测试100个样本用时仅为0.35 s。与现有多种传统故障诊断方法和端到端故障诊断方法相比,均具有更好的诊断效果。In the traditional mechanical fault diagnosis method for diesel engines,the degree of human participation is too high,which brings high uncertainty to results.To solve the problem,an end-to-end fault diagnosis method was proposed based on multiple attention convolutional neural networks(MACNN).In the method,multi-layer convolutional neural networks(CNN)and convolutional block attention module(CBAM)were combinedly used to extract features from the original time-domain data,and then the multi-dimensional feature map of convolutional output was recombined to retain its sequence information.Finally,the sequential attention mechanism was directly used to learn the sequence feature.The results show that MACNN can achieve a recognition accuracy of 97.88%for eight-class fault data sets of diesel engines,and the time taken to test 100 samples is only 0.35 s.Compared with other traditional fault diagnosis methods and end-to-end fault diagnosis methods,the proposed MACNN has better diagnosis effect.
关 键 词:多重注意力 卷积神经网络(CNN) 故障诊断 端到端
分 类 号:TH17[机械工程—机械制造及自动化] TN911[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.66