基于Kriging算法的虚拟应答器捕获方法  

Acquisition method of virtual balise based on Kriging algorithm

在线阅读下载全文

作  者:韩思成 陈永刚[1] 熊文祥 HAN Sicheng;CHEN Yonggang;XIONG Wenxiang(School of Automatization and Electric Engineering,Lanzhou Jiaotong University,Lanzhou 730070)

机构地区:[1]兰州交通大学自动化与电气工程学院,兰州730070

出  处:《导航定位学报》2022年第3期130-136,159,共8页Journal of Navigation and Positioning

基  金:国家自然科学基金地区科学基金资助项目(61763023)。

摘  要:针对全球卫星导航系统(GNSS)接收机所提供的定位数据是离散的,GNSS定位点有时不能在捕获区域内被捕获,从而出现虚拟应答器漏捕获的问题。提出了基于克里金(Kriging)算法的数据内插方法:使用Kriging算法得到插值点的函数表达式,然后利用变异函数对已知样本点的离散关系进行拟合,通过对样本点集合进行插值扩展增加样本点的数目,使虚拟应答器仍能在捕获区域内被捕获。最后设置仿真场景,将Kriging插值算法与不同GNSS接收机频率下的虚拟应答器捕获方法进行比较。仿真结果表明,在相同捕获半径的条件下,本文所述算法在虚拟应答器捕获率和捕获精度上具有显著优势,反映了该插值算法应用于虚拟应答器漏捕获的可行性。Aiming at Global Navigation Satellite System(GNSS)positioning data provided by the receiver was discrete,and sometimes the GNSS positioning points could not be captured in the capture area,resulting in the problem of missing capture of the virtual balise.The paper proposed a data interpolation method based on Kriging algorithm:the Kriging algorithm was used to obtain the functional expression of the interpolation points,and then the variogram was used to fit the discrete relationship of the known sample points.The sample point set was interpolated and expanded to increase the number of sample points,so that the virtual balise could still be captured in the capture area.Finally,the simulation scenario was set up to compare the Kriging interpolation algorithm with the virtual balise acquisition method under different GNSS receiver frequencies.The simulation results showed that under the condition of the same acquisition radius,the algorithm described in this paper had significant advantages in the acquisition rate and acquisition accuracy of virtual balise,which reflected the feasibility of applying the interpolation algorithm to the missing acquisition of virtual balise.

关 键 词:虚拟应答器 漏捕获 克里金算法 数据内插 全球卫星导航系统 

分 类 号:P228[天文地球—大地测量学与测量工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象