检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张旭辉[1,2] 王恒 沈奇峰 杨文娟 张超[1] ZHANG Xuhui;WANG Heng;SHEN Qifeng;YANG Wenjuan;ZHANG Chao(College of Mechanical Engineering,Xi'an University of Science and Technology,Xi'an 710054,China;Shaanxi Key Laboratory of Mine Electromechanical Equipment Intelligent Monitoring,Xi'an 710054,China)
机构地区:[1]西安科技大学机械工程学院,陕西西安710054 [2]陕西省矿山机电装备智能监测重点实验室,陕西西安710054
出 处:《工矿自动化》2022年第5期58-64,共7页Journal Of Mine Automation
基 金:国家自然科学基金青年项目(52104166);陕煤联合基金项目(2021JLM-03);陕西省重点研发计划项目(2018ZDCXL-GY-06-04)。
摘 要:煤矿井下粉尘浓度高、照度低,图像采集质量和特征提取效果受粉尘浓度影响较大,而相机参数和图像处理参数不能根据粉尘浓度变化自适应调整,易产生点-线特征提取不稳定和图像丢帧等问题。针对上述问题,对掘进机位姿视觉检测系统进行改进,利用矿用防爆工业相机采集不同粉尘浓度下的激光点-线图像,通过透过率建立图像灰度值与粉尘浓度等级的关系模型,通过实验获取不同粉尘浓度等级下的最优相机参数和图像处理参数;提出一种参数自适应调整算法,根据粉尘浓度等级自适应调整参数值,提高图像采集质量和点-线特征提取的稳定性和精度,进而提高掘进机位姿视觉检测系统的精度。实验结果表明:改进后悬臂式掘进机位姿视觉检测系统在X,Y,Z方向的平均测量误差分别为28.26,30.58,22.54 mm,处理100张图像后得到的可用图像从75张提高到90张,说明参数自适应调整算法有效提高了图像特征提取精度和数据可用性,从而保证了悬臂式掘进机位姿视觉检测系统的精度和稳定性。In coal mine,the dust concentration is high and the illumination is low.The image acquisition quality and characteristic extraction effect are greatly affected by dust concentration.However,the camera parameters and image processing parameters cannot be adjusted adaptively according to the change of dust concentration.Therefore,it is easy to cause problems such as unstable point-line characteristic extraction and image frame loss.In order to solve the above problems,the position and posture measurement system for boomtype roadheader based on machine vision is improved.The mine-used explosion-proof industrial camera is used to collect the laser point-line images under different dust concentrations.The relationship model between the image gray value and the dust concentration level is established through the transmittance.The optimal camera parameters and image processing parameters under different dust concentration levels are obtained through experiments.A parameter adaptive adjustment algorithm is proposed,and the parameter values are adjusted adaptively according to the dust concentration levels.Therefore,the image collection quality and the stability and precision of the point-line characteristic extraction are improved.Moreover,the precision of position and posture measurement system for roadheader based on machine vision is improved.The experimental result show that the average measurement errors in X,Y and Z directions of the improved vision detection system for boom-type roadheader are 28.26 mm,30.58 mm and 22.54 mm respectively.The number of usable images is increased from75 to 90 after processing 100 images.These results show that the parameter adaptive adjustment algorithm can effectively improve the precision of image characteristic extraction and the data availability.The algorithm ensures the precision and stability of position and posture measurement system for boom-type roadheader based on machine vision.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.219.250.4