检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:邓雅清 王晓峰 王小利 何育宇 DENG Yaqing;WANG Xiaofeng;WANG Xiaoli;HE Yuyu(School of Mathematics and Statistics,Minnan Normal University,Zhangzhou 363000,China)
机构地区:[1]闽南师范大学数学与统计学院,福建漳州363000
出 处:《集美大学学报(自然科学版)》2022年第3期260-266,共7页Journal of Jimei University:Natural Science
基 金:福建省中青年教师教育科研项目(JAT190368)。
摘 要:对广义Korteweg-de Vries(generalized Korteweg-de Vries,GKdV)方程的初边值问题进行数值研究,提出一个2层非线性守恒差分格式,该格式的收敛阶为O(τ^(2)+h^(4))。证明该格式在离散意义下保持原问题质量守恒和能量守恒,分别运用离散能量法和Von Neumann分析法证明该格式的可解性和绝对稳定性。数值实验结果表明,本文格式在时间和空间方向上分别具有2阶和4阶精度,且是质量和能量守恒的。The initial-boundary value problem for the generalized Korteweg-de Vries(GKdV)equation was numerically studied,and a two-level nonlinear conservative difference scheme was proposed,whose convergence order was O(τ^(2)+h^(4)).It was proved that the scheme maintained the mass conservation and energy conservation of the original problem in a discrete sense.The discrete energy method and the Von Neumann analysis method were used to prove the solvability and absolute stability of the scheme.Numerical experimental results showed that the scheme had second and fourth-order accuracy in time and space directions,respectively,and was conserved in mass and energy.
关 键 词:广义Korteweg-de Vries方程 高精度 守恒性 稳定性 Von Neumann分析法
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.33