检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:卫依雪 周冬明[1] 王长城 李淼 WEI Yixue;ZHOU Dongming;WANG Changcheng;LI Miao(School of Information Science&Engineering,Yunnan University,Kunming 650504,China)
机构地区:[1]云南大学信息学院,昆明650504
出 处:《计算机工程与应用》2022年第12期199-208,共10页Computer Engineering and Applications
基 金:国家自然科学基金(62066047,61365001,61463052)。
摘 要:随着夜景拍摄技术的提高,低照度图像增强成为计算机视觉领域一个新的热点。但是由于光照不足、逆光、聚焦失败等因素的影响会导致光照强度不足,导致图像亮度和对比度过低。为了更好地处理低光照图像,提出了一种基于多分支结构和U-net结合的低照度图像增强算法。利用深度残差网络将图片不同层次的特征提取出来进行交叉合并。将得到的图像通过不同深度和结构的U-net进行增强。将U-net增强后的图像进行融合,最终得到了增强后的低照度图像。通过大量的实验表明,运用深度残差网络和U-net,可以更好地进行特征提取,低照度图像增强的效果也更好,很大程度上优于现有的技术。提出的方法不仅在视觉上提高了亮度和对比度,色彩更真实,更加符合人眼视觉系统特性,而且PSNR、SSIM等七项客观图像质量指标在几种算法中都是最优的。With the improvement of night scene shooting technology,low-light image enhancement has become a new hot spot in the field of computer vision.However,due to the lack of light,backlighting,focusing failure and other factors will lead to insufficient light intensity,resulting in excessively low brightness and contrast of the image.To better process lowlight images,a low-light image enhancement algorithm based on multi-branch structure and U-net is proposed.The image features with different levels which are extracted by deep residual network are used for cross-merging.The obtained images are enhanced by U-net with different depths and structures,and then the images enhanced by U-net are fused.The enhanced low illuminance image is obtained.A mass of experiments show that the use of the deep residual network and U-net can better extract features,and the effect of low-intensity image enhancement is better,which is largely superior to the existing technology.The proposed methods not only improve the brightness and contrast visually,the colors are more realistic,and more in line with the characteristics of the human visual system,but also PSNR,SSIM and other seven objective image quality indexes are optimal in several algorithms.
关 键 词:低照度图像 多分支 U-net网络 神经网络 图像增强
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.112