空中目标威胁的ABC-RVM评估方法  被引量:4

ABC-RVMAssessment Method for Air Target Threat

在线阅读下载全文

作  者:牛军锋[1] 甘旭升[2] 刘影[1] 韦刚[3] 刘飞 NIU Jun-feng;GAN Xu-sheng;LIU Ying;WEI Gang;LIU Fei(Department of Management Technology,Xijing University,Xi’an 710123,China;Air Traffic Control and Navigation College,Air Force Engineering University,Xi’an 710051,China;Air Defence and Anti-missile College,Air Force Engineering University,Xi’an 710051,China)

机构地区:[1]西京学院管理技术系,西安710123 [2]空军工程大学空管领航学院,西安710051 [3]空军工程大学防空反导学院,西安710051

出  处:《火力与指挥控制》2022年第4期63-68,74,共7页Fire Control & Command Control

摘  要:为改善防空作战中对空中目标威胁的判断决策能力,提出了一种基于蜂群(ABC)算法和相关向量机(RVM)的空中目标威胁评估方法。从防空作战的实际出发,依据数理统计分析构建空中目标威胁指标体系;采用ABC算法优化多核RVM的相关参数,构建空中目标威胁评估模型。仿真分析表明,该方法是一种精度较高的空中目标威胁评估方法,在各项精度指标上均优于单一Gauss核或单一Sigmoid核的RVM方法,从而证实它的有效性和可行性。To improve the judging and decision-making ability on air target threats in air defense operations,an air target threat assessment method is proposed based on Relevance Vector Machine(RVM)and Artificial Bee Colony(ABC)algorithm.From the reality of air defense operations,the air target threat index system is constructed according to mathematical statistics analysis,and then ABC algorithm is used to optimize the related parameters involved in the multi-kernel RVM to establish an air target threat assessment model.Simulation analysis shows that,the proposed method is a high-precision air target threat assessment method,and it is better than RVM method with single Gauss kernel or single Sigmoid kernel in all accuracy indexes,thus its effectiveness and feasibility are confirmed.

关 键 词:目标威胁评估 核函数 参数优化 相关向量机 蜂群算法 

分 类 号:TJ760[兵器科学与技术—武器系统与运用工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象