一种基于VMD-PSO-SVM的短期风电功率预测算法  被引量:2

A Design of PSO-SVM Short-term Wind Power Forecasting Algorithm Based on VMD

在线阅读下载全文

作  者:黄峰[1,2] 向书琛 王睿 贾任远[1] 游红 HUANG Feng;XIANG Shuchen;WANG Rui;JIA Renyuan;YOU Hong(College of Electrical&Information Engineering,Hunan Institute of Engineering,Xiangtan 411104,China;Hunan province Cooperative Innovation Center for Wind Power Equipment and Energy Conversion,Xiangtan 411104,Chian)

机构地区:[1]湖南工程学院电气与信息工程学院,湘潭411104 [2]湖南省高校风电装备与电能变换协同创新中心,湘潭411104

出  处:《湖南工程学院学报(自然科学版)》2022年第2期7-12,共6页Journal of Hunan Institute of Engineering(Natural Science Edition)

基  金:国家自然科学基金资助项目(62006075);湖南省自然科学基金资助项目(2020JJ6021).

摘  要:基于风场数据,利用风电机组功率特性曲线,采用支持向量机(Support Vector Ma?chine,SVM)非线性拟合方法,设计了一种基于变分模态分解(Variational Model Decomposi?tion,VMD)的粒子群优化支持向量机短期功率预测算法.首先,通过VMD将原始风功率序列分解为多组平稳的固有模态函数和趋势项,对风电功率数据进行预处理;其次,利用粒子群算法优化(Particle Swurm Optimization,PSO)支持向量机参数,建立VMD-PSO-SVM组合预测算法模型,对每组固有模态函数和趋势项进行预测,得到多组预测结果,再将其重组,得到功率预测结果;最后,将预测结果与其他预测算法进行对比,结果表明预测精度更高.In order to improve the accuracy of wind power prediction,combined with wind turbine power characteristic curve and support vector machine nonlinear fitting,a short-term power prediction algorithm based on Particle Swarm Optimization(PSO)Support Vector Machine(SVM)is designed.Firstly,the original wind power series is decomposed into several groups of stationary intrinsic mode functions and trend terms by Variational Model Decomposition(VMD),so as to realize the preprocessing of wind power data.Secondly,particle swarm optimization is used to optimize the parameters of Support Vector Machine(SVM),and a combined prediction algorithm model VMD-PSO-SVM is established.Then,the natural mode functions and trend terms of each group are predicted,and several groups of prediction results are obtained.Then,these results are recombined to get the power prediction results.Finally,the prediction results of VMD-PSO-SVM are compared with those of traditional PSO-SVM,which shows that the accuracy is higher and in line with the actual needs.

关 键 词:风电功率预测 变分模态分解 粒子群算法 支持向量机 

分 类 号:TN73[电子电信—电路与系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象