检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:肖紫鸣 李建勋 张娅 宋文军[1] 孟丹 李小林 范蓓[2] 徐咏全 王超 XIAO Zi-Ming;LI Jian-Xun;ZHANG Ya;SONG Wen-Jun;MENG Dan;LI Xiao-Lin;FAN Bei;XU Yong-Quan;WANG Chao(School of Biotechnology and Food Science,Tianjin University of Commerce,Tianjin 300134,China;Institute of Food Science and Technology,Chinese Academy of Agricultural Sciences,Beijing 100193,China;Yunnan Tasly Deepure Biological Tea Group Limited Company,Pu’er 665000,China)
机构地区:[1]天津商业大学生物技术与食品科学学院,天津300134 [2]中国农业科学院农产品加工所,北京100193 [3]云南天士力帝泊洱生物茶集团有限公司,普洱665000
出 处:《食品安全质量检测学报》2022年第10期3228-3236,共9页Journal of Food Safety and Quality
基 金:河北省重点研发计划项目(21327105D)。
摘 要:目的建立一种基于近红外光谱技术快速测定甘薯多糖的方法。方法通过采集来自不同地区的74个甘薯及甘薯干的近红外光谱图,对异常样本进行剔除与回收后随机选择其中56个作为校正集,11个作为验证集。通过一阶导数、二阶导数、多元散射校正(multiplicative signal correction,MSC)、标准正态变量变换(standard normal variate,SNV)等组合预处理方式对原始光谱进行处理,比较多元线性回归(stepwise multiple linear regression,SMLR)、主成分回归(principal component regression,PCR)和偏最小二乘法(partial least squares,PLS)3种方法建立的模型结果,进一步选择波段确定最佳甘薯多糖含量测定方法。结果PLS建立的模型整体精确度最佳,最优模型的预处理方式为一阶导数处理,该模型的最佳波段范围为4000~10000 cm^(-1),校正集均方根误差(root mean square error of calibration set,RMSEC)为0.50,校正集相关系数(correlation coefficient of calibration set,R;)为0.9683,验证集均方根误差(root mean square error of prediction set,RMSEP)为0.43,验证集相关系数(correlation coefficient of prediction set,R;)为0.9440,主成分数为8。结论通过近红外光谱技术结合偏最小二乘法建立甘薯多糖模型可作为甘薯多糖快速测定的可行性方法。Objective To establish a method for the rapid determination of sweet potato polysaccharides based on near-infrared spectroscopy.Methods The near-infrared spectra of 74 sweet potatoes and dried sweet potatoes from different regions were collected,after the abnormal samples were eliminated and recovered,56 of them were randomly selected as the calibration set and 11 as the prediction set.The original spectrum was processed through a combination of preprocessing methods such as first derivative,second derivative,multiplicative signal correction(MSC),and standard normal variate(SNV).The results of the models established by the stepwise multiple linear regression(SMLR),principal component regression(PCR)and partial least squares(PLS)methods were compared,and the optimal method for determining the content of sweet potato polysaccharides was further selected by band selection.Results The model established by PLS had the best overall accuracy.The preprocessing method of the optimal model established by PLS was first-order derivative processing,and the optimal band of the model was in the range of 4000-10000 cm_(-1),the root mean square error of calibration set(RMSEC)was 0.50,correlation coefficient of calibration set(R_(c))was 0.9683,and the root mean square error in prediction(RMSEP)was 0.43,correlation coefficient of prediction set(R_(p))was 0.9440,and the number of principal components was 8.Conclusion The establishment of a sweet potato polysaccharide model by near-infrared spectroscopy combined with the partial least squares method can be used as a feasible method for the rapid determination of sweet potato polysaccharides.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.217.171.249