变形监测数据降噪方法及其质量评价浅析  被引量:1

Analysis on de-noising method and quality evaluation of deformation monitoring data

在线阅读下载全文

作  者:李冰[1] 徐笑笑 LI Bing;XU Xiaoxiao(School of Civil and Surveying&Mapping Engineering,Jiangxi University of Science and Technology,Ganzhou 341000,China)

机构地区:[1]江西理工大学土木与测绘工程学院,江西赣州341000

出  处:《长江信息通信》2022年第5期57-59,共3页Changjiang Information & Communications

摘  要:综合考虑变形监测数据降噪方法及降噪质量评定指标选取对实际应用具有重要指导意义,而区分不同降噪方法的原理是正确应用的基础。变形监测数据影响因素多且随机性大,从变形监测数据中剥离噪声的方法主要有小波变换、经验模态分解和变分模态分解。此文阐述了上述方法的降噪原理,同时阐述了常用的降噪质量评定指标RMSE、SNR、R、r、T、dnSNR的计算方法。Comprehensive consideration of noise reduction methods of deformation monitoring data and selection of quality evaluation indicators for noise reduction has important guiding significance for practical application, and the principle of distinguishing different noise reduction methods is the basis for correct application. There are many influencing factors and large randomness in deformation monitoring data. The main methods to strip noise from deformation monitoring data are wavelet transform, empirical mode decomposition and variational mode decomposition.In this paper, the principle of noise reduction of the above method is described, and the calculation methods of common noise reduction quality evaluation indexes RMSE, SNR, R,R, T and dnSNR are described.

关 键 词:变形监测数据处理 小波变换 经验模态分解 变分模态分解 降噪评价指标 

分 类 号:P258[天文地球—测绘科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象