检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘康安 张伟伟 肖永超 叶沐 LIU Kang'an;ZHANG Weiwei;XIAO Yongchao;YE Mu(Shanghai University of Engineering Science,Shanghai 201000,China;Tsinghua University,Beijing 100000,China)
机构地区:[1]上海工程技术大学,上海201000 [2]清华大学,北京100000
出 处:《电光与控制》2022年第7期126-131,共6页Electronics Optics & Control
摘 要:无人机在航姿模式下飞行时,姿态角误差波动较大,根据磁力计、加速度计和陀螺仪的互补性特点,提出一种自适应无迹卡尔曼滤波(AUKF)算法对MEMS传感器数据进行优化求解:以姿态四元数和陀螺漂移为状态量,加速度计和磁力计测量值为观测量,采用梯度下降法优化无迹卡尔曼滤波的关键参数,即过程噪声协方差,以提高四旋翼无人机姿态解算精度。对实际飞行数据的分析表明:分别与常规卡尔曼滤波和传统无迹卡尔曼滤波算法相比,该方法精度最高,可确保小型无人机在各种情况下飞行的稳定性。When the UAV flies in the attitude modethe attitude angle error fluctuates greatly.According to the complementary characteristics of magnetometeraccelerometer and gyroscopean Adaptive Unscented Kalman Filter(AUKF)algorithm is proposed to optimize the MEMS sensor data.The attitude quaternion and gyro drift are taken as state variablesand the output of accelerator and magnetometer is taken as measurement variables.The gradient descent algorithm is used to optimize the key parameter of Unscented Kalman Filternamelyprocess noise covarianceso as to improve the accuracy of attitude calculation.The analysis of actual flight data shows that the proposed method has the highest accuracy compared with conventional Kalman filter and traditional unscented Kalman filterand can ensure flight stability of small UAVs in various situations.
分 类 号:V249[航空宇航科学与技术—飞行器设计] TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.42