检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:郭丽莹 李文娜[1] 郎宪明[1] Guo Liying;Li Wenna;Lang Xianming(School of Information and Control Engineering,Liaoning Petrochemical University,Fushun Liaoning 113001,China)
机构地区:[1]辽宁石油化工大学信息与控制工程学院,辽宁抚顺113001
出 处:《辽宁石油化工大学学报》2022年第3期74-78,共5页Journal of Liaoning Petrochemical University
基 金:中国博士后科学基金项目(2020M660125);辽宁省博士科研启动基金计划项目(2019-BS-158);辽宁省教育厅项目(L2020017);辽宁石油化工大学引进人才科研启动基金项目(2019XHHL-008)。
摘 要:常压塔塔顶汽油干点与产品质量密切相关,因为常减压蒸馏工艺流程和变量相关性均复杂,所以汽油干点预测很难在线进行。软测量方法是解决这类变量估计和控制预测问题的一种技术途径。在核主元分析(KPCA)算法中引入稀疏主元分析(SPCA)思想,采用稀疏核主元分析(SKPCA)算法对模型的输入变量进行选择,实现了数据的非线性降维,简化了主元结构,增加了主元变量的稀疏性。将选择的稀疏主成分作为最小二乘支持向量机(LSSVM)的输入,建立常压塔塔顶干点软测量预测模型。仿真结果表明,SKPCA-LSSVM模型相对于传统PCA-LSSVM、KPCA-LSSVM方法具有较高的预测精度和性能优越性。The dry point of gasoline on the top of atmospheric tower is closely related to product quality,but it is difficult to measure the gasoline dry point online,and the soft sensor is a technical way to solve the estimation and control prediction of such variables.Due to the complexity of atmospheric and vacuum distillation process,the correlation between the variables increases.In this paper,sparse principal component analysis(SPCA)was introduced into kernel principal component analysis(KPCA)algorithm,and the input variables of the model were selected by sparse kernel principal component analysis(SKPCA)algorithm.The nonlinear dimensionality reduction between data was realized,the principal component structure was simplified,and the sparsity of principal component variables was increased.The selected sparse principal components were used as the input of the least squares support vector machine(LSSVM),and the soft sensor prediction model for the top dry point of atmospheric tower was established.The simulation results show that the SKPCA-LSSVM model has higher prediction accuracy and superior model performance compared with the traditional PCA-LSSVM and KPCA-LSSVM methods.
关 键 词:软测量 核主元分析 稀疏核主元分析 最小二乘支持向量机 汽油干点
分 类 号:TE624[石油与天然气工程—油气加工工程] TP29[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49