监督性机器学习算法在图像去噪中的应用  

在线阅读下载全文

作  者:刘婷[1] 闵慧[1] 刘金花 

机构地区:[1]湖南信息职业技术学院,湖南长沙410200

出  处:《电脑知识与技术》2022年第16期81-83,共3页Computer Knowledge and Technology

基  金:湖南省教育厅一般项目(No.21C1366)。

摘  要:原有图像处理方法的收缩维度过大,在图像切割过程中难以平衡到各个噪点位置,导致在图像去噪过程中丢失图像原始信息,需要反复对比去噪后的图像与原始图像,增加图像的去噪时间。深度学习在处理实际问题中发挥了巨大作用,可以通过各种智能技术手段,对信息图像进行处理,从而帮助人们更好地观察事物,采取较为正确的行动,研究监督性机器学习算法在图像去噪中的应用方法。在多点位设置图像噪点分隔节点的基础上,采用监督性机器学习算法,构建图像的噪点提取模型,聚类理论筛选噪点完成图像去噪,完成监督性机器学习算法在图像去噪中的应用方法设计。实验结果表明:以动物图像为测试对象,分别将其内部包含的噪点含量进行检测,采用原始方法和该文方法进行对比,能够得到与原始图像相一致的结果,并在图像不失真的前提下,能够将图像的去噪时间控制在1.26s之内,而原始方法平均需要21.32s和16.24s,说明该文方法能够提高去噪效率,具有实际应用效果。

关 键 词:监督性 机器学习算法 图像去噪 原始图像 

分 类 号:TN918.1[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象