检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王炳 李培现[1] 张军[2] 郝登程 孙致明 周守宝 WANG Bing;LI Peixian;ZHANG Jun;HAO Dengcheng;SUN Zhiming;ZHOU Shoubao(School of Geoscience and Surveying Engineering,China University of Mining and Technology-Beijing,D11 Xueyuan Road,Beijing 100083,China;College of Science,Inner Mongolia Agricultural University,306 Zhaowuda Road,Hohhot 010018,China;College of Computer and Information Engineering,Inner Mongolia Agricultural University,29 East-Erdos Street,Hohhot 010011,China)
机构地区:[1]中国矿业大学(北京)地球科学与测绘工程学院,北京市100083 [2]内蒙古农业大学理学院,呼和浩特市010018 [3]内蒙古农业大学计算机与信息工程学院,呼和浩特市010011
出 处:《大地测量与地球动力学》2022年第8期823-828,共6页Journal of Geodesy and Geodynamics
基 金:河北省自然科学基金生态智慧矿山联合基金(E2020402086);中央高校基本科研业务费专项(2021YQDC01)。
摘 要:为弥补传统GM(1,1)幂模型背景值等权构造的缺陷,针对原始变形序列的非等距振荡特征构建背景值加权优化的非等间距线性时变参数GM(1,1)幂模型,并采用具有全局优化特性、收敛速度快的粒子群算法求解模型的幂指数和背景值权重。以2组矿区监测点累积沉降观测数据为例进行沉降分析与预测,结果表明,本文模型的平均绝对百分比误差分别为2.33%和4.70%,预测误差分别为2.10%和6.38%,计算结果均优于其他3种模型。工程应用表明,优化模型在小样本非等距振荡序列应用中具有优越性,适用于地表沉陷的短期预测与时变分析。In order to fill in the gaps of the traditional GM(1,1)power model with equal-weight construction for background values,a non-equidistance linear time-varying parametric GM(1,1)power model with weighted optimization of background values is constructed for the non-equidistance spaced oscillation characteristics of the original deformation sequences.In addition,we use the particle swarm optimization(PSO)algorithm with fast convergence and high precision to solve the power exponent and background value weight.Taking the cumulative settlement observation data of monitoring points in two mining areas as examples,we use the constructed model for settlement analysis and prediction.The results show that average absolute percentage fitting errors of the model in this paper are 2.33%and 4.70%respectively,and the prediction errors are 2.10%and 6.38%respectively,which are better than other three GM(1,1)power models.The engineering application shows that the proposed optimization model has applicability and superiority to deal the small-sample non-equidistant oscillation sequences,and that it is suitable for short-term prediction and time-varying analysis in coal mining deformation monitoring engineering.
关 键 词:变形监测 GM(1 1)幂模型 非等间距 背景值优化 粒子群算法
分 类 号:P258[天文地球—测绘科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.134.92.193