检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:廖长华 LIAO Chang-hua(School of Business,Jiangnan University,Wuxi 214122,China)
出 处:《物流工程与管理》2022年第7期83-89,82,共8页Logistics Engineering and Management
摘 要:文中以一个供应商、一个制造商和一个零售商构成的三级供应链为研究对象,引入微分博弈方法,在动态框架下研究Nash非合作博弈、Stackelberg博弈和集中决策三种情形下,渠道成员的最优质量改进努力程度、广告宣传策略、供应链成员收益和整条供应链总收益,并对三种博弈情形下的最优策略进行分析比较。研究发现,Stackelberg博弈与Nash非合作博弈的制造商的质量改进努力程度和广告宣传策略相同,但Stackelberg博弈相比Nash非合作博弈,能够提升质量改进和广告宣传努力程度,增加供应链成员收益,表明成本分担机制实现帕累托改善;集中决策下,供应链系统收益达到最大。最后,文中进行数据仿真实验,通过算例分析验证了理论推导的结果。This paper takes a three-level supply chain consisting of a supplier,a manufacturer and a retailer as the research object,introduces the differential game method,and studies the channel members relationships in three situations of Nash non-cooperative game,Stackelberg game and centralized decision-making under the dynamic framework.Optimal quality improvement efforts,advertising strategies,revenue of supply chain members and total revenue of the entire supply chain,and the optimal strategies under three game situations are analyzed and compared.The study found that the quality improvement efforts and advertising strategies of manufacturers in the Stackelberg game and the Nash non-cooperative game are the same,but the Stackelberg game can improve the quality improvement and advertising efforts compared with the Nash non-cooperative game,and increase the benefits of supply chain members,which shows that the cost sharing mechanism achieves Pareto improvement;under centralized decision-making,the supply chain system benefits are maximized.Finally,the paper conducts data simulation experiments and verifies the results of theoretical derivation through numerical example analysis.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15