检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:叶剑华[1] 曹旌[2] 杨理 罗凤章[4] YE Jianhua;CAO Jing;YANG Li;LUO Fengzhang(Tianjin Key Laboratory of Information Sensing&Intelligent Control(Tianjin University of Technology and Education),Jinnan District,Tianjin 300222,China;State Grid Tianjin Electric Power Company,Hebei District,Tianjin 300010,China;State Grid Chongqing Yongchuan Power Supply Company,Yongchuan District,Chongqing 402160,China;Key Laboratory of Smart Grid of Ministry of Education(Tianjin University),Nankai District,Tianjin 300072,China)
机构地区:[1]天津市信息传感与智能控制重点实验室(天津职业技术师范大学),天津市津南区300222 [2]国网天津市电力公司,天津市河北区300010 [3]国网重庆永川供电公司,重庆市永川区402160 [4]智能电网教育部重点实验室(天津大学),天津市南开区300072
出 处:《电网技术》2022年第7期2610-2618,共9页Power System Technology
基 金:国家自然科学基金项目(51977140)。
摘 要:针对用户级综合能源系统(integrated energy system,IES)多元负荷波动性和随机性较强、精确预测难度较大的问题,提出了一种基于变分模态分解(variational mode decomposition,VMD)和多模型融合的超短期负荷预测方法。首先采用VMD将IES各类负荷序列分解成不同的本征模态函数(intrinsic mode function,IMF);然后将各IMF结合气象信息构造不同的特征集,分别输入支持向量回归机(support vector regression,SVR)、长短期记忆(long short-term memory,LSTM)网络和一维卷积神经网络(one-dimensional convolutional neural network,1DCNN)进行预测;最后,将3个模型的预测结果输入SVR进行融合得到最终的预测值,并采用和声搜索(harmony search,HS)算法优化SVR的参数。通过某用户级IES的实际数据对所提方法的有效性进行了验证,结果表明,所提出的多模型融合方法优于单模型预测方法,对电、冷、热负荷均具有最好的预测精度。In view of the strong volatility and randomness of the multi-energy loads and the difficulty in accurate forecasting in the user level integrated energy system(IES),an ultra-short-term load forecasting method based on the variational mode decomposition(VMD)and the multi-model fusion is proposed.Firstly,the multi-energy load sequences of IES are decomposed into different intrinsic mode functions(IMF)by the VMD.Then the IMFs are combined respectively with the meteorological information to construct different feature sets,which are input into the support vector regression(SVR),the long short-term memory(LSTM)network and the one-dimensional convolutional neural network(1DCNN)for prediction.Finally,the prediction results of the three models are input into the SVR for a fusion to obtain the final prediction values.The harmony search(HS)is used to optimize the parameters of the SVR.The effectiveness of the proposed method is verified by the actual data of a user level IES.The results show that the proposed multi-model fusion method has better prediction accuracy for electricity,cooling and heating loads,much superior to the single model prediction methods.
关 键 词:综合能源系统 负荷预测 变分模态分解 支持向量回归机 长短期记忆网络 卷积神经网络
分 类 号:TM721[电气工程—电力系统及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.16.50.172