检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:杨建秀 谢雪梅[1] 石光明 李甫 YANG Jianxiu;XIE Xuemei;SHI Guangming;LI Fu(School of Artificial Intelligence,Xidian University,Xi'an,Shaanxi 710071,China;School of Physics and Electronics,Shanxi Datong University,Datong,Shanxi 037009,China)
机构地区:[1]西安电子科技大学人工智能学院,陕西西安710071 [2]山西大同大学物理与电子科学学院,山西大同037009
出 处:《信号处理》2022年第5期901-914,共14页Journal of Signal Processing
基 金:国家重点研究开发项目(2018YFB2202400);国家自然科学基金(61836008,61632019);科技部重点研发项目(2020AAA0109301)。
摘 要:针对无人机视角下车辆由于尺度小分辨率低等问题而难以精确分类定位,本文设计了一个轻量级特征提取网络用于提供车辆的多尺度中低层信息,并分别将其融入到主干神经网络中,实现中低层特征信息的传递;同时利用主干网络提取有利于车辆与背景或其他类别分类的高级语义信息,然后将深层高级语义特征与浅层特征进行融合实现高级语义信息的传递,因此类似引入双向网络能够有效地传递不同层次的信息,增强车辆的特征信息表示。此外,采用多路空洞卷积进行特征提取,使得中低层信息更加丰富多样性;并设计了一种灵活有效的融合模块,能够将中低层信息较好地融入到主干网络中增强目标车辆的判别性特征。实验结果表明,该算法能够在无人机数据集上取得很好的检测效果,同样满足实时的应用需求。Vehicles from unmanned aerial vehicle(UAV)images were difficult to achieve accurate classification and location,due to the objects were small size and low-resolution. A light-weight feature extraction network was designed in this paper to provide multi-scale mid-/low-level feature that was integrated into the backbone network,which realized the transmission of mid-/low-level information. At the same time,the high-level semantic information was extracted from the backbone,which was beneficial to differentiate the target vehicle from background or other vehicle categories,then deep high-level semantic features and shallow features were fused to realize the transmission of high-level information. Thus,a similar bi-directional network was introduced that could effectively transfer information from different levels and enhance the feature representation for vehicles. Furthermore,multi-rate dilated convolution was proposed to obtain richer mid-/lowlevel information,and an effective feature fusion module was presented to integrate the mid-/low-level information into the backbone. The experimental results showed that the proposed algorithm could achieve accurate classification and location for UAV vehicles and realize the real-time application requirements.
关 键 词:中低层信息 高级语义信息 车辆检测 无人机 实时
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.33