面向商用车行驶工况优化设计的高速公路工况识别  被引量:3

Identification of Expressway Driving Cycles for Optimization of Commercial Vehicle Driving Cycles

在线阅读下载全文

作  者:王宪彬[1] 施树明[2] 裴玉龙[1] WANG Xian-bin;SHI Shu-ming;PEI Yu-long(School of Traffic and Transportation,Northeast Forestry University,Harbin 150040,Heilongjiang,China;Transportation College,Jilin University,Changchun 130025,Jilin,China)

机构地区:[1]东北林业大学交通学院,黑龙江哈尔滨150040 [2]吉林大学交通学院,吉林长春130025

出  处:《中国公路学报》2022年第6期355-362,共8页China Journal of Highway and Transport

基  金:中央高校基本科研业务费专项资金项目(2572019BG04);国家重点研发计划项目(2017YFC0803901)。

摘  要:为解决商用车行驶工况优化设计中确定工况类型的问题,研究商用车行驶工况特性,提出一种基于朴素贝叶斯方法的高速公路工况识别方法。利用21辆长途运营商用车采集的106200 km行驶工况数据,以3 km为单位进行分割,共获得35230段有效试验路段数据(其中:高速公路27986段;一般公路6124段;城市公路1120段)。以该数据为基础,根据朴素贝叶斯方法分析汽车运行过程中的平均速度和挡位统计信息,确定面向商用车行驶工况优化设计的阈值划分区间,获得相关的先验概率和条件概率,利用MATLAB软件进行编程计算,对高速公路工况进行了识别分析。研究结果表明:高速公路工况识别的正确率到达88.26%,高速公路工况被误判为一般公路工况的误判率为9.54%,高速公路工况被误判为城市公路工况的误判率为2.20%;基于朴素贝叶斯方法的高速公路工况识别能够为商用车行驶工况优化设计提供一种有效的高速公路工况识别方法。To solve the identification problem of the driving cycles type for optimization of commercial vehicle driving cycles,the characteristics of commercial vehicle driving cycles were analyzed.An expressway driving cycles identification method based on the Naive Bayes method is proposed.The 106200 km data collected by 21 long-distance commercial vehicles were divided into individual 3 km segments,and 35230 effective experimental road segments(including 27986,6124,and 1120 segments of expressways,general highways,and urban roads,respectively)were obtained.Based on the above data,according to the Naive Bayes method,the average speed and gear statistical information of the commercial vehicle driving cycles were analyzed,the threshold division intervals for optimization of commercial vehicle driving cycles were determined,and the relevant prior probability and conditional probability were obtained.The types of driving cycles were discriminated and analyzed by programming calculations using MATLAB software.The results indicate the following:the identification accuracy of expressway driving cycles reaches 88.26%,the misjudgment of expressway driving cycles as general highway driving cycles is 9.54%,and the misjudgment of expressway driving cycles as urban highway driving cycles is 2.20%.The identification method of expressway driving cycles based on the Naive Bayes method is effective for identifying expressway driving cycles for optimization of commercial vehicle driving cycles.

关 键 词:汽车工程 工况识别 朴素贝叶斯 汽车行驶工况 行驶工况特征参数 

分 类 号:U461.99[机械工程—车辆工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象