基于极限学习机模型的空气质量二次预报  被引量:1

Secondary Air Quality Forecast based on Extreme Learning Machine Model

在线阅读下载全文

作  者:朱盛恺 陈劲杰[1] ZHU Shengkai;CHEN Jinjie(University of Shanghai for Science and Technology,Shanghai 200093,China)

机构地区:[1]上海理工大学,上海200093

出  处:《软件工程》2022年第8期39-42,共4页Software Engineering

摘  要:目前对空气质量的预报常使用WRF-CMAQ模拟体系,但受限于模拟条件,预测结果并不理想,因此基于某监测点的污染物浓度实测数据,在预报过程中使用这些实测数据对一次预报数据进行修正以达到更好的预报效果。利用极限学习机模型训练对数据的预测,以AQI和首要污染物的误差这两个指标的加权组合作为适应度,通过遗传算法来优化模型,得到更准确地预测结果。并在对位置时间数据进行预测时采用滚动预测的方法以降低预测误差,相较于一次预测的预测误差降低了5%以上。结果表明:优化后的模型在空气质量预测的准确率方面有很大的提高。At present,WRF-CMAQ simulation system is often used to forecast air quality,but the forecast results are not satisfactory due to its limited simulation condition.Therefore,based on the actual measured data of pollutant concentrations at a monitoring site,this paper proposes to use these actual data to correct the primary forecast data during the forecasting process to achieve better forecasting results.Using Extreme learning machine model to train the forecasting of data,taking the weighted combination of two indicators,AQI(Air Quality Index)and the error of primary pollutants,as the fitness,the model is optimized by genetic algorithm to obtain more accurate forecast results.The rolling forecast method is used to reduce the forecast error when forecasting the location and time data.The forecast error is reduced by more than 5%compared with that of primary data,and the results show that the optimized model has a great improvement in the accuracy of air quality forecast.

关 键 词:大气污染 插值 极限学习机 遗传算法 

分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象