检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:葛芸萍[1] GE Yunping(Yellow River Conservancy Technical Institute,Kaifeng 475004,China)
出 处:《现代纺织技术》2022年第4期142-148,共7页Advanced Textile Technology
基 金:河南省教育厅项目(豫教[2019]30290号)。
摘 要:为了提高织物图像疵点检测的质量,提出了并行综合学习粒子群算法。首先,通过织物透光率获得织物图像的疵点;接着多尺度利用织物图像灰度值差异对疵点区域显著性增强,把疵点与周围像素进行区分,从而弱化背景对织物疵点的影响;然后综合学习粒子增设局部吸引因子,多群和并行策略提高搜索能力;最后得出算法流程。实验仿真显示本文算法对疵点检测清晰,破损疵点检测准确率为88.15%,缺失疵点检测准确率为90.46%,移位疵点检测准确率为93.87%,断经疵点检测准确率为86.54%,高于其它算法,同时检测消耗时间较少。In order to enhance the quality of fabric defect image detection,a parallel comprehensive learning particle swarm optimization algorithm is proposed.Firstly,the fabric defect in the image was obtained according to the light transmittance of the fabric.Secondly,through multi-scale utilization of gray value difference of fabric image,the saliency of the defect area was enhanced,and the defect was distinguished from the surrounding pixels,thereby weakening the influence of the background on the fabric defect.Thirdly,the local attraction factor was added based on comprehensive learning particles,and the multi-swarm and parallel strategies were adopted to improve the search capability.Finally,the algorithm flow was obtained.The simulation results show that the algorithm proposed in this paper can clearly detect the defect.The detection accuracy of damaged defect of 88.15%,the detection accuracy of missing defect of 90.46%,the detection accuracy of shifted defect of 93.87%,and the detection accuracy of broken warp defect of 86.54%.Its detection accuracy is higher than other algorithms,and consumes less time than other algorithms.
分 类 号:TP393[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.195