检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:林天然 姚争毅 常鹏飞 郑婧 李满玲 谢萍 陈诗瑶 储伟杰 李仁忠 LIN Tianran;YAO Zhengyi;CHANG Pengfei;ZHENG Jing;LI Manling;XIE Ping;CHEN Shiyao;CHU Weijie;LI Renzhong(Longyan Branch,Fujian Tobacco Company,Longyan,Fujian 364000;Fujian Tobacco Company,China Tobacco Corporation,Fuzhou,Fujian 350003;Nanjing Ecological Agriculture and Forestry Development(Southern Nanjing)Co.,Ltd.,Nanjing,Jiangsu 211500;Sanming Meteorological Bureau,Sanming,Fujian 365000,China)
机构地区:[1]福建省烟草公司龙岩市公司,福建龙岩364000 [2]中国烟草总公司福建省公司,福建福州350003 [3]南京南部新城生态农林发展有限公司,江苏南京211500 [4]福建省三明市气象局,福建三明365000
出 处:《贵州农业科学》2022年第8期134-141,共8页Guizhou Agricultural Sciences
基 金:中国烟草总公司福建省公司科技项目“基于大数据的龙岩烟草精准农业研究与应用”(2021350000240020);福建省烟草公司龙岩市公司科技项目“基于无人机平台的烟叶智能识别及云烟87成熟度判定系统的研发”(2020Y01)。
摘 要:【目的】构建叶色参数与鲜烟叶片成熟度的关联模型,为精准判断大田烟草鲜叶采收成熟度提供技术支撑。【方法】运用多元回归及BP神经网络构建叶色参数-烟叶成熟度判定模型,通过比较不同参数体系和不同建模方式对不同叶位鲜烟叶片成熟度的判定准确度,筛选最优成熟度智能化判定模型。【结果】以叶色偏态分布复合参数集(N2,共33个参数)作为输入因子,基于BP神经网络构建的F4(33-10-1)模型是最佳的叶片成熟度判定模型,可以满足对不同叶位不同成熟度的判定精度需求,对下部、中部和上部烟叶成熟度的判定精度分别为84.44%、96.10%和92.56%,总体精度达94.15%。【结论】采用叶色偏态分布复合参数集(N2)作为输入因子且采用BP神经网络构建的不同叶位鲜烟叶成熟度的判定方法可在一定程度上解决烟草叶片成熟度田间判定准确度低的问题,且可为烟叶生产过程中鲜烟成熟度的智能化识别提供新思路。【Objective】The correlation model between leaf color parameters and fresh tobacco leaf maturity is established to provide the technical support for accurately judging harvest maturity of tobacco leaves in tobacco field.【Method】The judgment model of leaf color parameters-tobacco leaf maturity is established by the multiple regression method and BP neural network.The optimal intelligent judgment model of tobacco leaf maturity is screened by comparing the maturity judgment accuracy of fresh tobacco leaves from different leaf position determined by different parameter systems and different modelling methods.【Result】The established F_(4)(33-10-1)model based on BP neural network and skewed distribution complex parameter set of leaf color(N_(2))is the optimal judgment model of tobacco leaf maturity,which can meet judgment accuracy requirement of different maturity of tobacco leaves from different leaf position.The maturity judgment accuracy of lower,middle and upper leaves determined by F_(4) model reaches 84.44%,96.10%and 92.56%respectively and the overall accuracy is up to 94.15%.【Conclusion】The established F_(4)(33-10-1)model based on BP neural network and skewed distribution complex parameter set of leaf color(N_(2))can solve the lower judgment accuracy of tobacco leaf maturity in tobacco field to some extent and provide a new idea for intelligent identification of fresh tobacco leaf maturity in actual tobacco production.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.222.177.138