检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:吴莉莉[1] 谷小青[1] 邢玉清[1] 林爱英[1] 潘建斌[1] 闫凤鸣[2] WU Lili;GU Xiaoqing;XING Yuqing;LIN Aiying;PAN Jianbin;YAN Fengming(College of Sciences,Henan Agricultural University,Zhengzhou 450002,China;College of Plant Protection,Henan Agricultural University,Zhengzhou 450002,China)
机构地区:[1]河南农业大学理学院,河南郑州450002 [2]河南农业大学植物保护学院,河南郑州450002
出 处:《现代电子技术》2022年第16期181-186,共6页Modern Electronics Technique
基 金:河南省科技攻关计划项目(182102110334);河南省科技攻关计划项目(172102210044);河南农业大学自然科学类青年创新基金项目(KJCX2018A20);河南省高等学校重点研究项目(16A510018)。
摘 要:昆虫刺吸电位(Electrical Penetration Graph,EPG)波形一直以来靠人工识别,不仅耗时费力,且主观性强。针对这一问题,文中提出一种利用深度学习中的卷积神经网络对其进行自动识别的方法。实验中首先对获取的EPG波形进行去噪、分帧等预处理;然后进入一维卷积神经网络进行训练,通过对卷积层数、卷积核大小、学习率、迭代次数等参数进行对比选择,确定两个卷积层和池化层的网络结构,得到了97.5%的平均识别率。这是深度学习在EPG波形识别方面做的初次尝试,相比于传统的机器学习方法,具有更高的识别性能。实验结果表明,文中提出的基于一维卷积神经网络的EPG波形识别方法切实可行。The electrical penetration graph(EPG)waveform of insects has always been manually recognized,which is time⁃consuming and subjective.An automatic recognition method based on convolution neural network in deep learning is proposed to solve above problems.In the experiments,the obtained EPG waveform is preprocessed by de⁃noising and framing,and then trained by means of the one⁃dimensional convolution neural network.By comparing and selecting the convolution layer,convolution kernel size,learning rate,iteration times and other parameters,the network structure of two convolution layer and pooling layer are determined to acquire the average recognition rate of 97.5%.This is the first attempt of deep learning in EPG waveform recognition.In comparison with the traditional machine learning method,this method has higher recognition performance.The experimental results show that the EPG waveform recognition method based on one⁃dimensional convolutional neural network proposed in this paper is feasible.
关 键 词:刺吸电位波形 卷积神经网络 自动识别 参数对比 卷积核 迭代处理
分 类 号:TN911.72-34[电子电信—通信与信息系统] TP391[电子电信—信息与通信工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.63