An Efficient False-Positive Reduction System for Cerebral Microbleeds Detection  

在线阅读下载全文

作  者:Sitara Afzal Muazzam Maqsood Irfan Mehmood Muhammad Tabish Niaz Sanghyun Seo 

机构地区:[1]Department of Computer Science,COMSATS University Islamabad,Attock Campus,Attock,Pakistan [2]Department of Media Design and Technology,Faculty of Engineering&Informatics,University of Bradford,Bradford,BD71AZ,UK [3]Department of Smart Device Engineering,School of Intelligent Mechatronics Engineering,Sejong University,Seoul,South Korea [4]School of Computer Art,College of Art&Technology,Chung-Ang University,Anseong,17546,South Korea

出  处:《Computers, Materials & Continua》2021年第3期2301-2315,共15页计算机、材料和连续体(英文)

基  金:the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(NRF-2019R1F1A1058715).

摘  要:Cerebral Microbleeds(CMBs)are microhemorrhages caused by certain abnormalities of brain vessels.CMBs can be found in people with Traumatic Brain Injury(TBI),Alzheimer’s disease,and in old individuals having a brain injury.Current research reveals that CMBs can be highly dangerous for individuals having dementia and stroke.The CMBs seriously impact individuals’life which makes it crucial to recognize the CMBs in its initial phase to stop deterioration and to assist individuals to have a normal life.The existing work report good results but often ignores false-positive’s perspective for this research area.In this paper,an efficient approach is presented to detect CMBs from the Susceptibility Weighted Images(SWI).The proposed framework consists of four main phases(i)making clusters of brain Magnetic Resonance Imaging(MRI)using k-mean classifier(ii)reduce false positives for better classification results(iii)discriminative feature extraction specific to CMBs(iv)classification using a five layers convolutional neural network(CNN).The proposed method is evaluated on a public dataset available for 20 subjects.The proposed system shows an accuracy of 98.9%and a 1.1%false-positive rate value.The results show the superiority of the proposed work as compared to existing states of the art methods.

关 键 词:Microbleeds detection FALSE-POSITIVE deep learning CNN 

分 类 号:R74[医药卫生—神经病学与精神病学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象