检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:魏秀业[1,2] 程海吉 贺妍[1,2] 赵峰 贺全玲 Wei Xiuye;Cheng Haiji;He Yan;Zhao Feng;He Quanling(Shanxi Key Laboratory of Advanced Manufacturing Technology,North University of China,Taiyuan,030051,China;School of Mechanical Engineering,North University of China,Taiyuan 030051,China)
机构地区:[1]中北大学先进制造技术山西省重点实验室,太原030051 [2]中北大学机械工程学院,太原030051
出 处:《电子测量与仪器学报》2022年第5期213-222,共10页Journal of Electronic Measurement and Instrumentation
基 金:中北大学先进制造技术山西省重点实验室开放基金(XJZZ202002);山西省青年基金(201901D211201)项目资助。
摘 要:针对行星齿轮箱振动信号相互耦合和故障诊断不准确等问题,提出一种基于特征融合与深度残差网络(ResNet)的行星齿轮箱故障诊断方法。首先,对采集到的行星轮裂纹、磨损,太阳轮断齿及复合故障等模拟故障振动信号应用多维集成经验模态分解(MEEMD)和VMD进行分解,分别筛选确定有效分量。然后,将筛选出的有效特征进行融合,分别应用传统卷积神经网络(CNN)和深度残差网络对其进行分类识别。结果发现,深度残差网络,分类准确度更高,可达95%以上。最后,应用深度残差对特征融合前后数据的分类准确度进行了比较。融合前准确度最高只达91.16%,低于融合的97.18%。可见,该方法对行星齿轮箱耦合振动信号的处理和故障诊断非常有效。Aiming at the coupling of vibration signals and inaccurate fault diagnosis of planetary gearbox,a fault diagnosis method of planetary gearbox based on feature fusion and ResNet is proposed.Firstly,the collected analog fault vibration signals such as planetary gear crack,wear,sun gear broken tooth and composite fault are decomposed by MEEMD and VMD to screen and determine the effective components respectively.Then,the selected effective features are fused and classified by using traditional CNN network and ResNet.The results show that the ResNet has higher classification accuracy,up to more than 95%.Finally,the classification accuracy of data before and after feature fusion is compared by using ResNet.The accuracy before fusion was only 91.16%,which was lower than 97.18%of after fusion.Thus,this method is very effective for coupling vibration signal processing and fault diagnosis of planetary gearbox.
关 键 词:多维集成经验模态分解 VMD 卷积神经网络 深度残差网络 行星齿轮箱 故障诊断
分 类 号:TN10[电子电信—物理电子学] TH165.3[机械工程—机械制造及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3