某船用高速机轨压控制策略研究  被引量:1

Research on rail pressure control strategy of a ship’s high-speed machine

在线阅读下载全文

作  者:许威 杜兵 张鹏 XU Wei;DU Bing;ZHANG Peng(Shanghai Institute of Ship Equipment,Shanghai 200030,China;Chongqing Hongjiang Machinery Co.,Ltd.,Chongqing 402160,China;National Engineering Laboratory for Marine Power System,Chongqing 402160,China)

机构地区:[1]上海船舶设备研究所,上海200030 [2]重庆红江机械有限责任公司,重庆402162 [3]船舶与海洋工程动力系统国家工程实验室,重庆402162

出  处:《内燃机》2022年第4期46-51,共6页Internal Combustion Engines

基  金:船用高速柴油机电控系统工程化应用研究项目(81B-1901-01)。

摘  要:本文在现有电控柴油机技术基础上,以高压共轨压力的控制为研究对象,分析轨压控制的难点,展开针对船用二十缸机在试验过程中出现的轨压波动问题的研究。基于实践应用,采用比例积分微分(PID)控制算法和开环、闭环等控制策略,通过遗传算法优化径向基函数(Radial Basis Function, RBF)神经网络,设计了遗传优化RBF-PID控制器,有效地选择出PID的最优控制参数组合。通过仿真验证控制策略的优越性,并在二十缸机的台架上进行控制策略的实验验证。试验结果表明,该策略的轨压稳态偏差在0.2%以内,在0.2s内达到稳定状态,满足柴油机轨压控制的应用需求。Based on the development of electronically controlled diesel engine technology, the paper takes the control of high pressure common rail pressure as the research object, introduces the composition and principle of high pressure common rail system, analyzes the difficulties of rail pressure control, and launches the research on the problems of rail pressure fluctuation in the process of marine twenty-cylinders engine test. Based on practical application, PID control algorithm and open loop, closed loop control strategy are adopted. The author optimized the radial RBF neural network by genetic algorithm, designed the genetic optimized RBF-PID controller and efficiently selected the optimal control parameter combination of PID. Then the superiority of the control strategy is verified by simulation, and finally the control strategy is verified on the bench of twenty-cylinder machine. The experimental results show that the steady-state deviation of rail pressure is within 0. 2% and reaches the stable state in 0. 2s, which can meet the requirements of diesel engine rail pressure control.

关 键 词:电控高压共轨 遗传算法 RBF神经网络 PID控制 控制策略 

分 类 号:TK422[动力工程及工程热物理—动力机械及工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象