检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:吴子燕[1] 贾大卫 王其昂 WU Ziyan;JIA Dawei;WANG Qi'ang(School of Mechanics,Civil Engineering and Architecture,Northwestern Polytechnical University,Xi5 an 710129,China;School of Mechanics and Civil Engineering,China University of Mining and Technology,Xuzhou 221116,China)
机构地区:[1]西北工业大学力学与土木建筑学院,陕西西安710129 [2]中国矿业大学力学与建筑工程学院,江苏徐州221116
出 处:《应用基础与工程科学学报》2022年第2期317-327,共11页Journal of Basic Science and Engineering
基 金:国家自然科学基金项目(51708545);西北工业大学研究生创意创新种子基金项目(ZZ2019212)。
摘 要:基于卷积神经网络(CNN)的建筑裂缝识别结果大多为含有裂缝的面元图像,而并非裂缝本身.本文将CNN与区域生长法结合,提出一种两阶段方法用于提取像素级别的裂缝特征.利用数据扩充法建立裂缝图像数据库,选择包括Alexnet、Vgg16、Vgg19、Inception-V3和ResNet50的5种典型CNN用于裂缝识别.综合考虑样本图像的整体准确率,单张图像的裂缝识别精确度及背景图像的置信度,确定精度最高的CNN,得到裂缝面元图像;利用区域生长法对CNN识别的裂缝面元图像进行裂缝特征提取,得到像素级别的裂缝图像.研究表明,Inception-V3网络在裂缝识别中具有较高的识别精度;通过区域生长法进行裂缝特征提取,可以得到精度较高的像素级别裂缝特征图像.该研究提供了一种高精度的建筑裂缝识别方法.The results of building crack recognition based on convolutional neural network(CNN)are bin images with crack,not the crack itself.A two-stage approach,which combined CNN and regional growth method,is proposed to extract a pixel-level crack feature.Data expansion method is used to establish crack image database.Five convolutional neural networks,Alexnet、Vgg16、Vgg19、Inception-V3 and ResNet50 are selected for crack identification.Comprehensively considered the test accuracy of image samples,the crack recognition accuracy of the single image and the confidence of background image,the optimal CNN are selected for crack identification,and the bin images with crack patch are obtained.The regional growth method is used to extract the crack feature from the crack images identified by CNN,and the pixel-level crack images are acquired.The research shows that the Inception-V3 network has higher recognition accuracy.By using the regional growth method to extract the crack feature,a high-precision pixel-level crack characteristic image can be obtained.The research provides a high-precision method for identifying building crack.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222