检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张颖[1] 仇大伟[1] 刘静[1] ZHANG Ying;QIU Dawei;LIU Jing(College of Intelligence and Information Engineering,Shandong University of Traditional Chinese Medicine,Jinan 250355,China)
机构地区:[1]山东中医药大学智能与信息工程学院,济南250355
出 处:《计算机工程与应用》2022年第16期18-30,共13页Computer Engineering and Applications
基 金:国家自然科学基金面上项目(82174528);山东省自然科学基金面上项目(ZR2020MH360);山东省中医药科技发展计划项目(2019-0056)。
摘 要:由于肝脏肿瘤图像复杂多样且肝脏肿瘤图像数据集获取困难等问题,快速准确地诊断肝脏肿瘤疾病面临着诸多挑战,尤其是肝脏肿瘤的分割是其中的关键研究内容。生成对抗网络在半监督学习领域具有强大的优越性,因此其在医学图像处理中得到广泛应用。为了分析肝脏肿瘤图像在分割领域的现状以及未来发展,针对应用GAN的肝脏肿瘤图像分割方法进行研究,介绍GAN模型的网络结构与衍生模型,重点总结并分析生成对抗网络在肝脏肿瘤图像分割中的应用,包括基于网络结构改进的GAN方法、基于生成器或判别器改进的GAN方法和基于GAN的其他改进方法。最后在已有的研究进展和基础之上,对GAN在肝脏肿瘤图像分割中的应用进行总结,讨论GAN在肝脏肿瘤图像分割上所面临的挑战,并对其未来发展进行展望。Due to the complexity and diversity of liver tumor images and the difficulty in obtaining the data set of liver tumor images,the rapid and accurate diagnosis of liver tumor diseases faces many challenges,especially the segmentation of liver tumors is the key research content.Generative adversarial network(GAN)is widely used in medical image pro-cessing because of its strong superiority in semi-supervised learning.In order to analyze the present situation and future development of liver tumor image segmentation,the segmentation methods of liver tumor image using GAN are studied,the network structure and derivative model of GAN model are introduced,and the application of generative adversarial network in liver tumor image segmentation is mainly summarized and analyzed,including the segmentation method based on improved network structure,improved GAN method based on generator or discriminator and other improved methods based on GAN.Finally,on the basis of the existing research progress,this paper summarizes the application of GAN in liver tumor image segmentation,discusses the challenges that GAN faces in liver tumor image segmentation,and looks forward to its future development.
关 键 词:生成对抗网络(GAN) 图像分割 肝脏肿瘤
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.188