Arabic Music Genre Classification Using Deep Convolutional Neural Networks (CNNs)  

在线阅读下载全文

作  者:Laiali Almazaydeh Saleh Atiewi Arar Al Tawil Khaled Elleithy 

机构地区:[1]Department of Software Engineering,Al-Hussein Bin Talal University,Ma’an,71111,Jordan [2]Department of Computer Science,Al-Hussein Bin Talal University,Ma’an,71111,Jordan [3]King Abdullah II School of Information Technology,The University of Jordan,Amman,Jordan [4]Department of Computer Science and Engineering,University of Bridgeport,Bridgeport,CT,06604,USA

出  处:《Computers, Materials & Continua》2022年第9期5443-5458,共16页计算机、材料和连续体(英文)

摘  要:Genres are one of the key features that categorize music based on specific series of patterns.However,the Arabic music content on the web is poorly defined into its genres,making the automatic classification of Arabic audio genres challenging.For this reason,in this research,our objective is first to construct a well-annotated dataset of five of the most well-known Arabic music genres,which are:Eastern Takht,Rai,Muwashshah,the poem,and Mawwal,and finally present a comprehensive empirical comparison of deep Convolutional Neural Networks(CNNs)architectures on Arabic music genres classification.In this work,to utilize CNNs to develop a practical classification system,the audio data is transformed into a visual representation(spectrogram)using Short Time Fast Fourier Transformation(STFT),then several audio features are extracted using Mel Frequency Cepstral Coefficients(MFCC).Performance evaluation of classifiers is measured with the accuracy score,time to build,and Matthew’s correlation coefficient(MCC).The concluded results demonstrated that AlexNet is considered among the topperforming five CNNs classifiers studied:LeNet5,AlexNet,VGG,ResNet-50,and LSTM-CNN,with an overall accuracy of 96%.

关 键 词:CNN MFCC SPECTROGRAM STFT arabic music genres 

分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象