检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:许思昂 李艺杰 梁桥康[1,2,3] 杨彬 XU Si-ang;LI Yi-jie;LIANG Qiao-kang;YANG Bin(College of Electrical and Information Engineering,Hunan University,Changsha 410082,China;Hunan Key Laboratory of Intelligent Robot Technology in Electronic Manufacturing,Changsha 410082,China;National Engineering Laboratory for Robot Vision Perception and Control Technologies,Changsha 410082,China)
机构地区:[1]湖南大学电气与信息工程学院,长沙410082 [2]电子制造业智能机器人技术湖南省重点实验室,长沙410082 [3]机器人视觉感知与控制技术国家工程实验室,长沙410082
出 处:《包装工程》2022年第15期33-41,共9页Packaging Engineering
摘 要:目的将基于深度学习的YOLOv5算法应用于PCB裸板的缺陷检测上,以提高检测的准确率。方法通过增加特征融合通路,将C2、C3、C4层直接与P2、P3、P4层相连,从而减小信息的损耗;引入更浅层的C2、F2、P2特征图以增加图像的细节信息;并且使用注意力机制SE_block,大幅提高原算法的准确率。结果改进后的网络的平均精度由91.54%提高至97.36%,提高了5.82%,并且对于各类缺陷,算法的检测精度都能保持在90%以上,满足工业的需求。结论文中的算法提高了检测精度,体现了浅层信息在小目标检测上的作用,验证了多信息融合通路的优势,彰显了注意力机制的优越性,相比于原算法具有一定的优势。The work aims to apply YOLOv5 algorithm to defect detection of bare PCB,so as to improve detection accuracy.Feature fusion path was added to directly connect layers C2,C3 and C4 with layers P2,P3 and P4,so as to re-duce the loss of information.Shallower C2,F2 and P2 feature images were introduced to increase the details of the image.Moreover,the attention mechanism SE_block was used to improve the accuracy of the original algorithm.The average accuracy of the improved network increased from 91.54%to 97.36%,with a growth of 5.82%.For all kinds of defects,the algorithm could keep a detection accuracy above 90%,which met the needs of industry.The proposed algorithm improves the detection accuracy,reflects the role of shallow information in small target detection,verifies the advantages of mul-ti-information fusion pathway,and highlights the advantages of attention mechanism.Compared with the original algo-rithm,the proposed algorithm has certain advantages.
关 键 词:PCB裸板 YOLOv5 缺陷检测 深度学习 目标检测
分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222