改进Xception模型的乳腺钼靶图像识别研究  被引量:1

Research on Mammograms Recognition with Improved Xception Model

在线阅读下载全文

作  者:李锦通 安建成[1] 王悦 曹锐 LI Jintong;AN Jiancheng;WANG Yue;CAO Rui(College of software,Taiyuan University of Technology,Taiyuan 030600,China)

机构地区:[1]太原理工大学软件学院,太原030600

出  处:《计算机测量与控制》2022年第8期189-196,共8页Computer Measurement &Control

基  金:山西省自然科学基金(201901D111093);山西省重点研发项目(201803D421047)。

摘  要:乳腺X线摄影技术是早期发现乳腺癌的主要方法,但其结果很大程度上受放射科医师临床诊断经验的限制;基于卷积神经网络对乳腺钼靶图像自动分类的研究可以为放射科医师临床诊断提供意见,然而乳腺癌肿块边缘模糊且良恶性肿块特征差异较小,分类任务面临重重挑战;为了提高乳腺钼靶图像分类的准确率,提出一种基于Xception模型的改进优化算法,改进模型中的残差连接模块,并嵌入Squeeze-and-excitation(SE)注意力机制对模型进行优化;采用优化后的Xception模型并结合迁移学习算法进行乳腺钼靶图像特征提取,并优化全连接层网络进行图像分类,使用公开的乳腺癌图像数据库CBIS-DDSM进行实验,将乳腺钼靶图像自动分为良性和恶性;实验结果表明该方法可以有效提高模型的分类效果,准确率和AUC分别达到了97.46%和99.12%。Mammography is the primary method for the early detection of breast cancer,but the results is largely limited by the radiologist's experience in clinical diagnosis.Based on convolutional neural network,the study on automatic classification of mammography images can provide advice for radiologists in clinical diagnosis,however the classification task of mammography images face with many challenges due to the fuzzy edge and small difference between benign and malignant tumors.In order to improve the accuracy of mammography classification,an improved optimization algorithm based on the Xception model is proposed,the residual connection modules in the model are improved,and the Squeeze and excitation(SE)attention mechanism is embedded to optimize the model.The optimized Xception model combined with transfer learning algorithm is used to extract the features of mammography images,and the full-connection layer network is optimized for image classification.Experiments are conducted on the open data set CBIS-DDSM,and the mammography images are automatically divided into benign and malignant.The experimental results show that this method can effectively improve the classification effect of the model,and the accuracy and AUC reached 97.46%and 99.12%respectively.

关 键 词:深度学习 乳腺X线图像 图像分类 卷积神经网络 Xception 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象