三阶Emden-Fowler型微分方程的第4类Chebyshev混合函数数值解法  被引量:1

Numerical Solution of Third-Order Emden-Fowler Equations by the Fourth Kind of Chebyshev Hybrid Functions Method

在线阅读下载全文

作  者:熊临晨 许小勇 朱婷 XIONG Linchen;XU Xiaoyong;ZHU Ting(School of Science,East China University of Technology,330013,Nanchang,PRC)

机构地区:[1]东华理工大学理学院,南昌330013

出  处:《江西科学》2022年第4期643-649,669,共8页Jiangxi Science

基  金:江西省自然科学基金项目(20202BABL201006);东华理工大学博士科研启动项目(DHBK2019213)。

摘  要:提出了求解三阶Emden-Fowler型微分方程的第4类Chebyshev混合函数方法。通过第4类Chebyshev多项式解析形式与BPF函数相结合,构造出第4类Chebyshev混合函数。在Rieman-Liouville分数积分定义下,借助Laplace变换导出第4类Chebyshev混合函数的分数阶积分公式。利用第4类Chebyshev混合函数得出误差上界。结合配置法将三阶Emden-Fowler型微分方程转化为代数方程组进行求解。通过实例验证了该方法的有效性与可行性。In this paper,a fourth kind of chebyshev hybrid function method for solving three-order Emden-Fowler differential equations is proposed.By combining the analytic form of the fourth Chebyshev polynomial with the BPF function,the fourth Chebyshev hybrid function is constructed.Under the definition of Rieman-Liouville fractional integral,the exact expression of fractional integral of the fourth kind of Chebyshev hybrid function is derived by means of Laplace transform.The upper bound of error is obtained by using the fourth Chebyshev hybrid function.Combined with the configuration method,the third-order Emden-Fowler differential equations are transformed into algebraic equations for solving.The reliability and effectiveness of the method are verified by examples.

关 键 词:Emden-Fowler型微分方程 第4类Chebyshev多项式 混合方法 配置法 

分 类 号:O241.5[理学—计算数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象