基于先验信息的SR-STAP字典重构方法  被引量:2

SR-STAP Dictionary Reconstruction Method Based on Prior Information

在线阅读下载全文

作  者:陈怀庆 张小贝[1] 方习高[2] 吴琛[2] CHEN Huaiqing;ZHANG Xiaobei;FANG Xigao;WU Chen(Communication and Information Engineering,Shanghai University,Shanghai 200444,China;Integrate Avionics System Design Department,Shanghai Aircraft Design and Research Institute,Shanghai 201210,China)

机构地区:[1]上海大学通信与信息工程学院,上海200444 [2]上海飞机设计研究院综合航电系统设计研究部,上海201210

出  处:《探测与控制学报》2022年第4期66-73,共8页Journal of Detection & Control

摘  要:稀疏恢复(SR)空时自适应处理(STAP)方法能够在有限的观测样本条件下精确地估计杂波协方差矩阵,但出现的网格失配问题会降低稀疏恢复性能。为解决网格失配问题,提出基于先验信息的SR-STAP字典重构方法。该方法首先利用雷达系统和机载平台的工作参数计算杂波脊线的分布范围,然后根据杂波的归一化多普勒频率和空域频率的比值来调整空域频率的分布间隔,最后以滑窗的方式非均匀地划分空时平面以重构过完备空时字典。仿真结果表明,与传统字典的SR-STAP方法相比,该字典重构方法能够更好地匹配杂波分量的分布,可有效解决网格失配问题。The Sparse Recovery(SR)Space-Time Adaptive Processing(STAP)method can accurately recover the clutter covariance matrix under the condition of limited observation samples,but the inevitable off-grid problem will reduce the performance of sparse recovery.In order to overcome the off-grid problem,a SR-STAP dictionary reconstruction method based on prior information is proposed in this paper.In this method,the distribution range of the clutter ridge is calculated by using the working parameters of radar system and airborne platform,and then the distribution interval of the spatial frequency is adjusted by the ratio of the normalized doppler frequency to the spatial frequency.Finally,the space-time plane is non-uniformly divided by sliding window to reconstruct the overcomplete space-time dictionary.The simulation results show that,compared with the traditional dictionary SR-STAP method,the dictionary reconstruction method proposed in this paper can better match the distribution of clutter components,and can effectively overcome the off grid problem.

关 键 词:稀疏恢复 空时自适应处理 网格失配 先验信息 字典重构 

分 类 号:TN958[电子电信—信号与信息处理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象