未知环境下多AUV协同避障方法研究  被引量:3

Research on multi-AUV cooperative obstacle avoidance method in unknown environment

在线阅读下载全文

作  者:刘亚 曾俊宝[1,2] Liu Ya;Zeng Junbao(State Key Laboratory of Robotics,Shenyang Institute of Automation,Chinese Academy of Sciences,Shenyang 110016,China;Institutes for Robotics&Intelligent Manufacturing,Chinese Academy of Sciences,Shenyang 110169,China;University of Chinese Academy of Sciences,Beijing 100049,China)

机构地区:[1]中国科学院沈阳自动化研究所机器人学国家重点实验室,沈阳110016 [2]中国科学院机器人与智能制造创新研究院,沈阳110169 [3]中国科学院大学,北京100049

出  处:《计算机应用研究》2022年第10期2929-2934,3032,共7页Application Research of Computers

基  金:国家自然科学基金资助项目(42176194)。

摘  要:针对多AUV(autonomous underwater vehicle)系统在未知环境中进行路径规划时难以兼顾避障与编队的问题,提出了一种基于领航—跟随者与行为的多AUV协同避障方法。首先,通过构造碰撞危险度及偏离目标评价函数,设计了AUV局部路径规划方法;在此基础上,结合编队控制方法,分别为领航者和跟随者设计不同的行为以及行为选择模式。半物理仿真实验结果表明,该算法能够实现多AUV系统在未知环境中的协同避障,且队形偏离度与恢复队形时间优于传统多机器人避障算法。实验结果证明了该算法的可行性与有效性。Aiming at the problem that it is difficult to take into account both obstacle avoidance and formation when multi-AUV system plans path in unknown environment,this paper proposed a multi-AUV cooperative obstacle avoidance method based on leader-follower and behavior.Firstly,this paper designed a local path planning method for AUV by constructing the evaluation function of collision risk and deviation from the target.On this basis,combined with formation control method,this paper designed different behaviors and behavior selection patterns for leader and followers respectively.The semi-physical simulation experiment results show that the algorithm can realize the cooperative obstacle avoidance of multi-AUV system in unknown environment,and the formation deviation and recovery time are better than traditional multi-robot obstacle avoidance algorithms.Experimental results verify the feasibility and effectiveness of the algorithm.

关 键 词:路径规划 多AUV 协同避障 领航—跟随者 行为 

分 类 号:TP242[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象