基于量子粒子群优化的无人机攻防博弈决策  被引量:3

UAV Game Decision Based on Quantum Particle Swarm Optimization

在线阅读下载全文

作  者:刘佳敏 吴庆宪[1] 王玉惠[1] 周大可[1] LIU Jiamin;WU Qingxian;WANG Yuhui;ZHOU Dake(College of Automation Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 211106,China)

机构地区:[1]南京航空航天大学自动化学院,南京211106

出  处:《火力与指挥控制》2022年第9期73-78,84,共7页Fire Control & Command Control

基  金:科技创新2030-“新一代人工智能”重大资助项目(2018AA0100805)。

摘  要:针对无人机攻防博弈面临信息不确定等挑战,基于区间数和量子粒子群优化进行无人机攻防博弈混合策略研究。设定双方策略集,用区间数表示不确定信息。确定态势评估函数,建立态势区间数矩阵,利用集对分析将态势区间数矩阵转化为态势联系数矩阵,利用量子粒子群优化算法确定各态势指标的最优权重。建立博弈支付函数,计算敌我双方的区间支付矩阵,结合区间数的可能度公式,采用量子粒子群优化算法,求解出敌我双方攻防博弈对抗的混合策略纳什均衡解和期望收益区间,实现无人机攻防博弈决策。通过仿真实例验证了所建模型的可行性和有效性。In view of the challenges of uncertain information,the mixed strategy of UAV offense and defense game based on interval number and quantum particle swarm optimization are studied.Firstly,the strategy set of two sides is determined,and the uncertain information is represented by interval number.Secondly,situation assessment function is determined,situation interval number matrix is established and then the matrix into contact number matrixes by set pair analysis is transformed,the optimal weights of situation elements are determined by the quantum particle swarm optimization algorithm.Thirdly,game payment function is established,and interval payment matrix is calculated.By combining quantum particle swarm optimization algorithm and probability formula of interval number,the mixed strategy Nash equilibrium solution is solved and the revenue interval of both sides is expected,and the game decision of UAV offense and defense are realized.Finally,the feasibility and effectiveness of model is renified by a simulation example.

关 键 词:无人机 攻防博弈 区间数 量子粒子群优化算法 

分 类 号:V279.3[航空宇航科学与技术—飞行器设计]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象