检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:吴迪[1] 宋家豪 冯晓婉 WU Di;SONG Jiahao;FENG Xiaowan(College of Physical Science and Technology,Shenyang Normal University,Shenyang 110034,China)
机构地区:[1]沈阳师范大学物理科学与技术学院,沈阳110034
出 处:《沈阳师范大学学报(自然科学版)》2022年第4期319-323,共5页Journal of Shenyang Normal University:Natural Science Edition
基 金:国家自然科学基金资助项目(11804235)。
摘 要:为了检测学校教室或图书馆的人流量,设计了一种优化的YOLOv5和轻量化DeepSort的人流量统计系统。为提升目标检测效果,采用CIoU loss回归损失和DIoU-NMS非极大抑制,在加快目标边界框参数学习的同时可提高定位精度,提升遮挡行人的检测性能;在DeepSort外观特征提取网络的基础上,结合轻量级网络ShuffleNet V2,对特征提取模型重新训练,减小模型的参数网络复杂度并保持良好的精确度,提高了系统的可移植能力;在视频中设置虚拟线,利用行人通过虚拟线的时间差进一步计算行人速度。实验结果表明,采用端到端的方式对行人目标进行高效追踪,缩小后的模型体积仅为原模型的5%,大大改善了对遮挡行人的检测性能,可以较准确地统计出人流量与行速,并提高了鲁棒性。Aimed at the flow of people in the classroom or library,an optimized YOLOv5 and a lightweight DeepSort flow statistics system are proposed.In order to enhance the target detection effects,the CIoU loss regression loss and DIoU-NMS non-maximum suppression are used to speed up the learning target bounding box parameters,improve the positioning accuracy and detection performance of occluded pedestrians.Based on DeepSort appearance feature extraction network and ShuffleNetV2 lightweight network,the feature extraction model is retrained to reduce the parameter network complexity and maintain good accuracy,and boost the system portability.Virtual lines are set up in the video to detect the flow of people,and the time difference between pedestrians passing the virtual lines is used to further calculate pedestrian speed.In this paper,the end-to-end method is used to effectively monitor the pedestrian target.Experimental results show that the proposed design represents only 5%of the original network volume,which improves the performance of occluded pedestrian detection,accurately counts the pedestrian flow and speed,and enhances the robustness.
关 键 词:多目标追踪 目标检测 YOLOv5 DeepSort 深度学习
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49