基于区域限制的WiFi/PDR融合实时定位算法  

WiFi/PDR Fusion Real-Time Localization Algorithm Based on Region Constraint

在线阅读下载全文

作  者:胡文强 胡建鹏[1] HU Wenqiang;HU Jianpeng(School of Electronic and Electrical Engineering,Shanghai University of Engineering Science,Shanghai 201620,China)

机构地区:[1]上海工程技术大学电子电气工程学院,上海201620

出  处:《电子科技》2022年第10期21-26,共6页Electronic Science and Technology

基  金:上海市科技学术委员会重点项目(18511101600)。

摘  要:针对室内定位系统在实际应用场景中算法复杂度高、运算量较大的问题,文中设计并实现了一种基于EKF的WiFi/PDR融合定位系统。在WiFi指纹定位部分提出了基于自适应滑动窗口的指纹匹配方法,通过邻近状态的RSSI欧式距离解算得到搜索窗口,以动态调整指纹库的匹配范围,从而实现了定位结果的快速收敛。在融合定位阶段,结合EKF与PDR的系统特性来解决时间配准问题。以WiFi数据更新为基准,利用EKF算法进行数据融合,在融合数据不同步时由PDR直接输出定位结果。实验结果表明,该定位系统具有良好的运行效果与稳定性,所提方法在实际定位场景中的平均定位误差为2.27 m,并在80%的情况下能够达到3 m的定位精度。In view of the problems of high algorithm complexity and large computation in the practical application of indoor positioning system,a WiFi/PDR integrated positioning system based on EKF is designed and implemented.In the WiFi fingerprint positioning part,a fingerprint matching method based on an adaptive sliding window is proposed.The search window is obtained by calculating the RSSI Euclidean distance in the neighboring state to dynamically adjust the matching range of the fingerprint library,thereby achieving rapid convergence of the positioning results.In the fusion localization stage,the system characteristics of EKF and PDR are combined to solve the time registration problem.Based on the WiFi data update,the EKF algorithm is used for data fusion,and the PDR directly outputs the positioning result when the fusion data is not synchronized.Experimental results show that the positioning system has good operating effects and stability.The average positioning error of the proposed method is 2.27 m in the actual positioning scene,and the positioning accuracy can reach 3 m in 80%of the cases.

关 键 词:多源融合 室内定位 接收信号强度 WiFi定位 K-最近邻 PDR 扩展卡尔曼滤波 实时定位 

分 类 号:TN92[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象