检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张帅 杨剑锋[2] 刘玉敏[2] 靳琳琳[3] ZHANG Shuai;YANG Jian-feng;LIU Yu-min;JIN Lin-lin(School of Management Engineering,Henan University of Engineering,Zhengzhou 451191,China;School of Business,Zhengzhou University,Zhengzhou 450001,China;School of Business,Zhengzhou University of Aeronautics,Zhengzhou 450015,China)
机构地区:[1]河南工程学院管理工程学院,河南郑州451191 [2]郑州大学商学院,河南郑州450001 [3]郑州航空工业管理学院商学院,河南郑州450015
出 处:《运筹与管理》2022年第9期140-146,共7页Operations Research and Management Science
基 金:国家自然科学基金资助项目(U1904211,71672182);国家社科基金资助项目(20BTJ059);教育部人文社科基金资助项目(21YJC630151);河南工程学院博士基金资助项目(Dsk2020002)。
摘 要:变量选择控制图是高维统计过程监控的重要方法。针对传统变量选择控制图较少考虑高维过程空间相关性而造成监控效率低的问题,提出一种基于Fused-LASSO的高维空间相关过程监控模型。首先,利用Fused LASSO算法对似然比检验进行改进;然后,推导出基于惩罚似然比的监控统计量;最后,通过仿真模拟和真实案例分析所提监控模型的性能。仿真实验和真实案例均表明:在高维空间相关过程中,当相邻监控变量同时发生异常时,利用所提监控方法能够准确识别潜在异常变量,取得较好的监控效果。In traditional variable selection control chart domain,the spatial correlation problem among high-dimensional process is rarely considered.For solving this problem,a high-dimensional spatially correlated process monitoring model based on Fused LASSO algorithm is proposed.First,the Fused LASSO method is applied to optimize the likelihood ratio test.Then,the control limit of proposed model is obtained from Monte Carlo simulations.Finally,the performance of proposed model is compared with VS-MEWMA control chart through both simulations and real example.The results show that the proposed monitoring model outperforms the alternative method in high-dimensional process when the adjacent variables are spatially correlated,since the potential abnormal variables can be captured accurately by proposed method.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.244