检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张存禄 马莉萍[2] 陈晓宇[2] ZHANG Cun-lu;MA Li-ping;CHEN Xiao-yu(Graduate School of Education,PekingUniversity;Institute of Education Economics,Peking University)
机构地区:[1]北京大学教育学院 [2]北京大学教育经济研究所
出 处:《教育经济评论》2022年第4期41-56,共16页China Economics of Education Review
基 金:国家自然科学基金青年项目(72104010)。
摘 要:基于某“双一流”建设大学本科生食堂消费大数据、助学金发放的行政数据以及家庭基本信息的调查数据,利用统计学习模型对基于食堂消费大数据识别家庭经济困难学生的精准性进行了估计。研究发现:食堂消费大数据对家庭经济困难学生的识别精准率仅能达到约60%,采用更精细的消费时间序列数据可以将识别精准率提高到约65%,进一步结合家庭基本信息的问卷调查数据则可以将识别精准率提高到约92%。相比传统的逻辑回归,采用提升树和支持向量机等判别模型可以提高模型对家庭经济困难学生的识别能力。本文的研究发现说明,仅仅利用食堂消费数据作为补助依据的精准度仍有待提高,应将食堂消费数据与学生家庭基本信息数据相结合来提升资助精准度。Based on the big data of undergraduates’ canteen consumption, the administrative data of financial aid and the survey data of socioeconomics information at a double first-class university in China, the paper examines the accuracy of identifying students with financial difficulties by using the statistical learning models and draws the following conclusions: the accuracy of identifying those undergraduates with financial difficulties is 60% by using big data of canteen consumption;and the accuracy can be improved to about 65% by using more refined consumption time series data;the accuracy can be further improved to about 92% by combining consumption data with questionnaire survey data of socioeconomics information.Compared with traditional logistic regressions the accuracy of discriminant models such as Lifting Tree and Support Vector Machine is significantly higher.These findings indicate that the accuracy of identifying students with financial difficulties needs to be improved by combining canteen consumption data with students’ socioeconomics information.
关 键 词:家庭经济困难学生 贫困生 学生资助 精准资助 校园大数据
分 类 号:G645.5[文化科学—高等教育学] F323.8[文化科学—教育学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249