检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李廷元[1] 杨勇 Li Tingyuan;Yang Yong(School of computer science,Civil Aviation Flight University of China,Guanghan 618307)
机构地区:[1]中国民用航空飞行学院计算机学院,广汉618307
出 处:《现代计算机》2022年第15期81-84,120,共5页Modern Computer
摘 要:随着深度学习的发展,基于深度学习的命名实体识别抽取过程中,作为基础步骤的预训练模型也愈发受到重视。中文预训练语言模型能够更好地结合语义语境,更加充分地考虑到一词多义的情况,因此该语言模型目前也普遍应用于命名实体识别任务。文中首先介绍了BERT、ERNIE、NEZHA三种预训练模型,之后构建预训练模型、BiGRU及CRF的算法模型,在阿里中文地址要素解析比赛数据集上进行中文地址命名实体识别任务。实验结果表明,NEZHA取得当前预训练语言模型最优的识别结果。Compared with traditional machine learning methods,deep learning methods can achieve better performance in named entity recognition tasks without relying on artificial features.Named entity extraction process based on deep learning,as a basic step of the pre-training model is also more and more attention.The Chinese pre-training model is widely used in named entity recognition,which can better combine semantic context and fully consider the polysemy problem.In this paper,BERT,ERNIE and NEZHA are introduced,the pre-training model,BiGRU and CRF algorithm model structure are built,and the Chinese address named entity recognition task is performed on the dataset of Ali Chinese Address Elements Parsing Contest.Experimental results show that ERNIE obtains the optimal recognition result of the current pre-training model.
分 类 号:TP391.1[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.15.27.146