结合决策树分类和区域生长的轨道扣件检测方法  被引量:1

Track fastener detection method based on decision tree classification and region growth

在线阅读下载全文

作  者:高洪 王勇[2,3] 唐超 王晓静 GAO Hong;WANG Yong;TANG Chao;WANG Xiaojing(Wuhan Metro Bridge and Tunnel Management Co.,Ltd.,Wuhan 430019,China;Beijing Lirban Construction Group Co.,Ltd.,Beijing 100088,China;Beijing Urban Construction Survey&Design Research Institute Co.,Ltd.,Beijing 100101,China)

机构地区:[1]武汉地铁桥隧管理有限公司,湖北武汉430019 [2]北京城建集团有限责任公司,北京100088 [3]北京城建勘测设计研究院有限责任公司,北京100101

出  处:《测绘通报》2022年第9期18-22,共5页Bulletin of Surveying and Mapping

摘  要:轨道扣件数据量大、体积小,轨道扣件病害的检测工作繁重、效率低下,因此亟须改进轨道扣件检测技术。线结构激光技术发展迅速,其具有高分辨率、高精度、高响应等特点。本文采用线结构激光测量技术快速获取轨道扣件精细三维点云,利用决策树分类和区域生长算法对精细扣件三维点云进行分析,实现扣件病害快速检测和扣件几何参数计算。利用该技术对广州18号线轨道交通扣件进行检测,由检测结果可知,该方法检测效率高、检测结果精准。Due to the large amount of data and small size of rail fasteners,the detection of rail fastener diseases is heavy and inefficient.Therefore,a fast rail fastener detection technology is urgently needed.The rapid development of line structure laser technology has the characteristics of high resolution,high precision and high response.In this paper,the line structure laser measurement technology is used to quickly obtain the fine 3D point cloud of rail fasteners,and the decision tree classification and regional growing algorithm are used to analyze the 3D point cloud of the fine fasteners,so as to realize the fast detection of fastener diseases and the calculation of fastener geometric parameters.Using this technology to detect the rail transit fasteners of Guangzhou Line 18,the detection results show that the method has high detection efficiency and accurate detection results.

关 键 词:轨道扣件 线结构激光 三维点云 决策树 区域生长算法 

分 类 号:P23[天文地球—摄影测量与遥感]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象