检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:钟增胜[1,2] 朱纯瑶[1] 杨逸飞 廖忻橙 王任之 赵颖 周芳芳[1] 施荣华[1] 秦拯[3] ZHONG Zengsheng;ZHU Chunyao;YANG Yifei;LIAO Xincheng;WANG Renzhi;ZHAO Ying;ZHOU Fangfang;SHI Ronghua;QIN Zheng(School of Computer Science and Engineering,Central South University,Changsha 410075,China;School of Artificial Intelligence,Chongqing Technology and Business University,Chongqing 400067,China;College of Computer Science and Electronic Engineering,Hunan University,Changsha 410082,China)
机构地区:[1]中南大学计算机学院,湖南长沙410075 [2]重庆工商大学人工智能学院,重庆400067 [3]湖南大学信息科学与工程学院,湖南长沙410082
出 处:《湖南大学学报(自然科学版)》2022年第10期119-129,共11页Journal of Hunan University:Natural Sciences
基 金:国家自然科学基金资助项目(61872388,62072470);湖南省自然科学基金资助项目(2021JJ30881)。
摘 要:数字货币交易中的洗钱行为区别于传统金融犯罪形态,传统反洗钱技术手段难以直接适用.针对数字货币交易所面对的洗钱行为检测需求和检测难点,通过定义交易行为,构建了一个层次化加权的交易行为特征描述体系,提出了一个结合孤立点检测和小类簇检测的数字货币交易行为异常检测方法,实现从交易行为到交易用户的洗钱可疑程度的量化度量.在真实数字货币交易所数据集上进行评估实验,结果显示,异常交易行为、可疑洗钱用户、显著性异常交易行为和隐蔽性异常交易行为的检测准确率分别为96.02%、95.05%、95.83%和95.81%,均优于基准算法.同时,本文算法的特征体系能对检测结果做出有效解释,帮助数字货币交易所安全员快速开展后续调查和取证工作.Money laundering in cryptocurrency transactions is differentiated from traditional financial crimes due to its strong anonymity and decentralization.The existing anti-money laundering techniques cannot be directly applied to cryptocurrency transactions.Considering the traceability,interpretability,and measurability of money laundering crime forensics,this paper designs a four-stage money laundering detection approach:(1)defining a set of transactions of a user in a period as a transaction behavior;(2)constructing a set of features to characterize transaction behaviors;(3)adopting outlier detection and small cluster detection methods to find out loud and subtle anomalous transactions;(4)analyzing the suspicious score distributions of users and calculating a suspected-launderer value for each of them.To evaluate the performance of our proposed method,a real-world money laundering dataset is obtained and experimentally evaluated.The experiment results show that our approach obtains 96.02%,95.05%,95.83%,and 95.81%accuracy in terms of abnormal transaction behaviors,suspected money launderers,loud abnormal transactions,and subtle abnormal transactions,respectively,all better than benchmark algorithms.Moreover,the carefully-designed features of transaction behaviors can offer supportive interpretations for the detection results and help exchange security officers to carry on further investigations and crime forensics.
分 类 号:TP391.7[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.191.5.237