基于驾驶模拟器洗出算法的非线性放缩法研究  被引量:1

Study on Nonlinear Scaling Method Based on Washout Algorithm in Driving Simulator

在线阅读下载全文

作  者:游达章[1] 张扬 张业鹏[1] 陈林波 YOU Da-zhang;ZHANG Yang;ZHANG Ye-peng;CHEN Lin-bo(School of Mechanical Engineering,Hubei University of Technology,WuhanHubei 430068,China)

机构地区:[1]湖北工业大学机械工程学院,湖北武汉430068

出  处:《计算机仿真》2022年第9期167-171,共5页Computer Simulation

基  金:国家自然基金项目(51875180)。

摘  要:驾驶模拟器洗出算法中非线性放缩法的放缩参数固定,参数的选取过度依赖专家经验,导致模拟器空间利用率低、模拟逼真度不高。针对上述问题,提出了基于PSO的非线性放缩法。对现有非线性放缩法进行优化时,综合考虑了真实驾驶员和模拟器驾驶员之间的感知误差、信号放缩前后的归一化相关系数以及模拟器的物理运动限制等因素,并结合经典洗出算法进行了仿真验证。结果表明,所提方法克服了现有非线性放缩法依赖经验确定参数和模拟器工作空间利用率低的问题,降低了人体感知误差,提高了模拟逼真度。In the driving simulator washing algorithm, the parameters of the nonlinear scaling method are fixed, and the selection of parameters relies on expert experience, which leads to the low space utilization rate of the simulator and low simulation fidelity. To solve the above problems, a nonlinear scaling method based on PSO is proposed. When optimizing the existing nonlinear scaling method, the factors such as the perceptual error between the real driver and the simulator driver, the normalized correlation coefficient before and after the signal scaling and the physical motion limitation of the simulator were comprehensively considered, and the simulation was carried out by combining the classical washout algorithm. The results show that the proposed method overcomes the existing problems of empirically-dependent parameters and low utilization of the simulator workspace, reduces the human perception error and improves the simulation fidelity.

关 键 词:洗出算法 模拟驾驶器 非线性放缩法 粒子群算法 人体感知 

分 类 号:TP391.9[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象