基于二次规划的量化随机非线性系统在线辨识  

On Line Identification of Quantized Stochastic Nonlinear Systems Based on Quadratic Programming

在线阅读下载全文

作  者:杨仕旗 王宏伟 李昊哲[1] 郭明霄 YANG Shi-qi;WANG Hong-wei;LI Hao-zhe;GUO Ming-xiao(School of Electrical Engineering,Xinjiang University,Urumqi Xinjiang 830047,China;School of Control Science and Engineering,Dalian University of Technology,Dalian Liaoning 116024,China)

机构地区:[1]新疆大学电气工程学院,新疆乌鲁木齐830047 [2]大连理工大学控制科学与工程学院,辽宁大连116024

出  处:《计算机仿真》2022年第9期324-330,共7页Computer Simulation

基  金:国家自然科学基金项目(61863034)。

摘  要:针对一类带有色噪声的Hammerstein非线性有限脉冲响应量化系统的在线辨识问题,借助二次规划解最优值的方法,得到未知参数的估计值,并对其在不同采样次数和不同噪声方差输入下的参数辨识效果进行分析。讨论待辨识系统的数学模型和量化器的性质,利用量化器的性质推导出将系统辨识问题转化为求二次规划最优解的过程,给出参数估计值取得唯一性的条件,并利用二次规划的KKT定理对其收敛性进行分析与证明,通过仿真实例验证所用方法的有效性。In this paper, an on-line identification problem for a class of Hammerstein nonlinear finite impulse response quantization system with colored noise was studied. By using the method of quadratic programming to solve the optimal value, the estimated values of unknown parameters were obtained, and the effect of parameter identification under different sampling times and different noise variance inputs was analyzed. Firstly, the mathematical model of the system to be identified and the properties of the quantifier were discussed. Secondly, the process of converting the system identification problem to the optimal solution of quadratic programming was deduced by using the properties of the quantifier. The conditions for uniqueness of the parameter estimates were given, and its convergence was analyzed and proved by using the KKT theorem of quadratic programming. Finally, a simulation example was used to verify the convergence of the system.The validity of the method.

关 键 词:非线性 量化系统 二次规划 收敛性 

分 类 号:TP13[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象