检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:朱馨渝 马平[1] ZHU Xinyu;MA Ping(Institute of Optics and Electronics,Chinese Academy of Sciences,Chengdu 610209,China;University of Chinese Academy of Sciences,Beijing 100049,China)
机构地区:[1]中国科学院光电技术研究所,四川成都610209 [2]中国科学院大学,北京100049
出 处:《现代电子技术》2022年第21期127-130,共4页Modern Electronics Technique
摘 要:针对传统PID控制器在面对实际对象时在线整定困难的问题,提出采用BP神经网络与PID控制器相结合,并采用粒子群算法对其网络权值矩阵进行优化,但在用粒子群算法优化BP神经网络PID控制器的参数时存在收敛速度不够快,易陷入局部最优解等问题。提出通过改进粒子群算法中惯性权重由常用的线性递减改为随机权重,然后将其最优粒子用于优化BP神经网络PID控制器的网络初始权值矩阵以得到更优的参数。最后通过仿真实验得到其相较于标准粒子群算法有更好的适应度函数曲线,并且其超调量为10.4%,调节时间为0.31 s,均小于同一传递函数下的BP神经网络PID和用标准粒子群算法优化的BP神经网络PID。结果表明该方法相较于BP神经网络PID和用标准粒子群算法优化的BP神经网络PID更具有优越性。It is difficult for the traditional PID controller to implement online tuning when it is faced with actual objects,so the researchers have proposed a way to combine the BP neural network with the PID controller,and the particle swarm optimization(PSO)algorithm is adopted to optimize the network weight matrix of the PID controller.However,when optimizing the parameters of the BP neural network PID controller by the PSO algorithm,the PSO algorithm′s convergence speed is not fast enough,and the PSO algorithm is susceptible to falling into the local optimal solution.In this paper,the inertia weight in the improvement particle swarm optimization(IPSO)algorithm is changed from the commonly⁃used linear decreasing to random weight,and then the optimal particles obtained by IPSO are used to optimize the network initial weight matrix of the BP neural network PID controller to obtain better parameters.It is obtained in the simulation experiment that the proposed method has the better fitness function curve than the standard PSO algorithm,and its overshoot(10.4%)is smaller and its tuning duration(0.31 s)is shorter than those of the BP neural network PID under the same transfer function and the BP neural network PID optimized by the standard PSO algorithm.The results show that the method is superior to BP neural network PID and BP neural network PID optimized by standard PSO algorithm.
关 键 词:PID参数优化 改进PSO⁃BP神经网络 改进粒子群算法 BP神经网络 惯性权重 随机权重 超调量 调节时间
分 类 号:TN876.3-34[电子电信—信息与通信工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.33