检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:曹增欢 王国锋[1] 户满堂 盛延亮 CAO Zenghuan;WANG Guofeng;HU Mantang;SHENG Yanliang(School of Mechanical Engineering,Tianjin University,Tianjin 300350,China)
出 处:《机械科学与技术》2022年第10期1496-1502,共7页Mechanical Science and Technology for Aerospace Engineering
基 金:国家重点研发计划项目(2019YFA0706702,2019YFB1704802-2);国家自然科学基金项目(52075365,51675369);天津市自然科学基金项目(17JCZDJC40100)。
摘 要:在对振动加速度信号进行积分时,信号中存在的不可避免的直流分量以及积分过程中产生的趋势项和误差行为,使得积分结果的精度大大降低,尤其是二次积分后,信号的频域特性丢失严重。针对此问题,提出了一种基于变分模态分解(Variational mode decomposition, VMD)和频域积分相结合的故障特征提取方法。首先基于最大峭度准则对加速度信号进行变分模态分解,根据皮尔逊相关系数法从若干分量中选取相关系数最大的分量作为最优分量,最后对最优分量进行频域二次积分,得到振动位移信号。仿真及实验结果表明该方法有效降低了趋势项及噪声等带来的干扰,提高了故障信息的辨识精度,具有较好的优越性。Due to the inevitable DC component in the signal and the trend term and error behavior generated during the integration process, the accuracy of the integration result is greatly reduced when integrating the signal of vibration acceleration. Especially after the secondary integration, the frequency domain characteristics of the displacement signal are lost seriously. In order to solve this problem, a fault feature extraction method combining variational mode decomposition(VMD) and frequency domain integration is proposed in this paper. Firstly, the acceleration signal is decomposed by VMD, and then the component with the largest correlation coefficient is selected as the optimal component from several components according to the pearson correlation coefficient method. Finally, the optimal component is subjected to frequency domain quadratic integration to obtain the vibration displacement signal. Simulation and experimental results show that the method can effectively reduce the interference caused by trend items and noise, and improve the accuracy of fault information, which has better superiority.
分 类 号:TP274[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.52