检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:林雷 沈艳军[1] LIN Lei;SHEN Yan-jun(College of Electrical Engineering&New Energy,China Three Gorges University,Yichang Hubei 443002,China)
机构地区:[1]三峡大学电气与新能源学院,湖北宜昌443002
出 处:《控制理论与应用》2022年第8期1460-1470,共11页Control Theory & Applications
基 金:Supported by the National Natural Science Foundation of China(61876097);the Yichang Key Laboratory of Defense and Control of Cyber-Physical Systems(2020XXRH01);the Hubei Key Laboratory of Hydroelectric Machinery Design and Maintenance(2021KJX04).
摘 要:本文研究一类非线性系统的自适应抗测量噪声的输出反馈镇定问题.所研究的非线性系统输出中存在正的且有界的乘性噪声.非线性项的增长率为一个未知常数乘以输出的幂函数加上带有时滞输出的幂函数.首先,证明一个矩阵不等式.其次,设计含有3个时变增益的输出反馈控制器,并给出增益的自适应律,然后,构造适当的Lyapunov-Kraso-vskii泛函,给出确保闭环系统渐近稳定的充分条件.最后,仿真实验验证该方法的可行性和有效性.In this paper,we study adaptive anti-measurement-disturbance stabilization for a class of nonlinear systems via output feedback.In the output of the systems,there exist multiplicative noises which are assumed to be positive and have known upper and lower bounds.The growth rate of the nonlinear terms has an unknown constant multiplied by a power function of the output and a power function of the output with time delay.Firstly,a matrix inequality is developed.Secondly,we design an output feedback stabilizer with three time-varying gains,and give adaptive laws of the gains as well.Then,a Lyapunov-Krasovskii functional is constructed,and sufficient conditions are derived to ensure that the closed-loop system is asymptotically stable.Finally,numerical simulations are provided to verify the feasibility and effectiveness of the design method.
关 键 词:乘积形式噪声 自适应镇定 非线性系统 时滞 输出反馈
分 类 号:TP13[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.171