检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:邱伟文 赖冠宇 章云[1] QIU Wei-wen;LAI Guan-yu;ZHANG Yun(College of Automation,Guangdong University of Technology,Guangzhou Guangdong 510006,China)
机构地区:[1]广东工业大学自动化学院,广东广州510006
出 处:《控制理论与应用》2022年第8期1479-1488,共10页Control Theory & Applications
基 金:国家自然科学基金项目(61803090);广东省自然科学基金项目(2019A1515012109)资助.
摘 要:本文针对一类执行器受Preisach磁滞约束的不确定非线性系统,提出一种基于神经网络的直接自适应控制方案,旨在解决系统的预定精度轨迹跟踪问题.由于Preisach算子与系统动态发生耦合,导致算子输出信号不可测量,给磁滞的逆补偿造成了困难.为解决此问题,本文首先将Preisach模型进行分解,以提取出控制命令信号用于Backstepping递归设计,并在此基础上融合一类降阶光滑函数与直接自适应神经网络控制策略,形成对磁滞非线性和被控对象非线性的强鲁棒性能,且所设计方案仅包含一个需要在线更新的自适应参数,同时可保证Lyapunov函数时间导数的半负定性.通过严格数学分析,已证明该方案不仅保证闭环系统所有信号均有界,而且输出跟踪误差随时间渐近收敛到用户预定区间.基于压电定位平台的半物理仿真实验进一步验证了所提出控制方案的有效性.In this paper,a direct adaptive control scheme based on neural networks is proposed for a class of uncertain nonlinear systems with Preisach hysteresis constraints on the actuators to solve the trajectory tracking problem with prescribed accuracy.Due to the coupling between Preisach operator and system dynamics,the output signal of the operator is immeasurable,which makes it difficult to compensate the hysteresis.To overcome this problem,the Preisach model is firstly decomposed to extract the control command signal for backstepping recursive design,and based on this,a class of reduced-order smooth function and direct adaptive neural network control strategy are fused to establish a strong robustness performance to hysteresis nonlinearity and plant nonlinearities.Moreover,our designed scheme only contains one adaptive parameter to be updated online,and also guarantees the semi-negative definite property of the time derivative of the chosen Lyapunov function.It has been proved,through a rigorous mathematical analysis,that the scheme ensures not only the boundedness of all closed-loop system signals,but also the asymptotic convergence of output tracking error to a user-defined interval with time.The effectiveness of the proposed control scheme is further verified by a semi-physical simulation experiment based on the piezoelectric positioning stage.
关 键 词:Preisach算子 自适应控制系统 磁滞 神经网络 非线性系统
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.217