检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:翟弋 张满红 宫婷婷 ZHAI Yi;ZHANG Manhong;GONG Tingting(College of Electrical and Electronic Engineering,North China Electric Power University,Beijing 102206,China)
机构地区:[1]华北电力大学电气与电子工程学院,北京102206
出 处:《河北师范大学学报(自然科学版)》2022年第6期564-574,共11页Journal of Hebei Normal University:Natural Science
基 金:江苏省自然科学基金(BK20191296);中央高校基本科研业务费专项资金资助课题(2019B19114)。
摘 要:在现有文献中,为计算硅PIN二极管反向恢复过程,应用线性有限元(LFEM)方法将双极性扩散方程(ADE)写成变分形式.研究表明,为从变分函数中推导出ADE,p■(δp)/■t相关项必须被忽略.通过结合傅里叶展开(FE)和LFEM方法形成一个新的有限元法,发现所忽略p■(δp)/■t相关项对应于在傅里叶展开中删除p=p(x,t)方程中的一项,其中p=p(x,t)是未耗尽N^(-)区中随空间和时间变化的载流子浓度.另外,对于多个有限元的实现,提出了二阶有限元法(SFEM),并在描述硅PIN二极管反向恢复过程时将其性能与线性有限元法(LFEM)进行了比较.结果表明,在算法引起的其他误差和空间离散化点的数量减少时,二阶有限元法(SFEM)比线性有限元法(LFEM)精度更好,且与p■(δp)/■t项相关的误差也减少.In many references,the application of the linear finite element(LFEM)method to compute the reverse recovery processes of silicon PIN diodes depends on writing the ambipolar diffusion equation(ADE)in a variational formulation.A careful examination shows that,in order to derive the ADE from the variational function,a term related to p■(δp)/■t must be ignored.By combining Fourier expansion(FE)and LFEM method to form a new FEM method with a single finite element,we find dropping the p■(δp)/■t related term corresponds to removing a term in the equations of p(x,t)in the FE method,here p=p(x,t)is the space and time dependent carrier density in the undepletcd N^(-)region.For the multiple-finitc-element implementations,we propose a second order FEM(SFEM)and compare its performance with LFEM.Our results show that the SFEM has a better accuracy than the LFEM.The p■(δp)/■t term related error in the FEM methods is reduced,when other errors induced by the algorithm and the number of space discretization points are reduced.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49