检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:葛倩 张光斌[1] 张小凤[1] GE Qian;ZHANG Guangbin;ZHANG Xiaofeng(School of Physics and Information Technology,Shaanxi Normal University,Xi’an Shaanxi 710119,China)
机构地区:[1]陕西师范大学物理学与信息技术学院,西安710119
出 处:《计算机应用》2022年第10期3046-3053,共8页journal of Computer Applications
摘 要:为解决特征选择ReliefF算法在利用欧氏距离选取近邻样本过程中,算法稳定性差以及选取的特征子集分类准确率低的问题,提出了一种利用最大信息系数(MIC)作为近邻样本选择标准的MICReliefF算法;同时,以支持向量机(SVM)模型的分类准确率作为评价指标,并多次寻优,以自动确定其最优特征子集,从而实现MICReliefF算法与分类模型的交互优化,即MICReliefF-SVM自动特征选择算法。在多个UCI公开数据集上对MICReliefF-SVM算法的性能进行了验证。实验结果表明,MICReliefF-SVM自动特征选择算法不仅可以筛除更多的冗余特征,而且可以选择出具有良好稳定性和泛化能力的特征子集。与随机森林(RF)、最大相关最小冗余(mRMR)、相关性特征选择(CFS)等经典的特征选择算法相比,MICReliefF-SVM算法具有更高的分类准确率。In order to solve the problems of feature selection ReliefF algorithm, such as poor algorithm stability and low classification accuracy for selected feature subsets caused by using Euclidean distance to select the nearest neighbor samples, an MICReliefF(Maximum Information Coefficient-ReliefF) algorithm based on Maximum Information Coefficient(MIC) was proposed. At the same time, the classification accuracy of the Support Vector Machine(SVM) model was used as the evaluation index, and the optimal feature subset was automatically determined by multiple optimizations, thereby realizing the interactive optimization of the MICReliefF algorithm and the classification model, that is the MICReliefF-SVM automatic feature selection algorithm. The performance of the MICReliefF-SVM algorithm was verified on several UCI public datasets. Experimental results show that the MICReliefF-SVM automatic feature selection algorithm cannot only filter out more redundant features, but also select the feature subsets with good stability and generalization ability. Compared with Random Forest(RF), max-Relevance and Min-Redundancy(mRMR), Correlation-based Feature Selection(CFS) and other classical feature selection algorithms, MICReliefF algorithm has higher classification accuracy.
关 键 词:特征选择 最大信息系数 RELIEFF算法 支持向量机 极限学习机
分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15