随机潜蚤病模型的动力学行为分析  

Dynamic Behavior Analysis of a Stochastic Tungiasis Epidemic Model

在线阅读下载全文

作  者:孔丽丽 李录苹 陈慧琴 康淑瑰 KONG Lili;LI Luping;CHEN Huiqin;KANG Shugui(School of Mathematics and Statistics,Shanxi Datong University,Datong 037009)

机构地区:[1]山西大同大学数学与统计学院,大同037009

出  处:《工程数学学报》2022年第5期725-738,共14页Chinese Journal of Engineering Mathematics

基  金:国家自然科学基金(11871314);大同市平城区科技计划项目(202106);山西大同大学产教融合科研项目(2019CXK9,2019CXK11)。

摘  要:潜蚤病是贫困地区的一种人畜共患病,其发病过程极易受到随机波动环境因素的影响。因此,建立并讨论了一类以正确卫生习惯为控制策略的随机潜蚤病模型。首先,通过构造恰当的Lyapunov函数并利用Ito公式证明了随机系统全局正解的存在唯一性。其次,在一定的条件下证明了随机系统的正解围绕在确定性系统平衡点附近的振荡行为。最后,通过数值模拟验证了理论结果的正确性。数值结果表明,当随机干扰强度足够大时将会导致疾病灭绝。Tungiasis is a zoonotic disease in poverty-stricken areas, and its pathogenesis is easily affected by random fluctuation environmental factors. Therefore, a class of stochastic tungiasis model with correct hygiene habits as a control strategy is established and discussed.Firstly, the existence and uniqueness of global positive solutions of stochastic systems are proved by proper Lyapunov functions and Ito formula. Secondly, under certain conditions, the oscillation behavior of the positive solution of the stochastic system around the equilibrium point of the deterministic system is proved. Finally, the correctness of the theoretical analysis is verified by the numerical simulation. The results indicate that the disease will become extinct when the intensity of random interference is high enough.

关 键 词:随机潜蚤病模型 平衡点 渐近行为 LYAPUNOV函数 ITO公式 

分 类 号:O175.1[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象