基于局部特征射影变换的组织切片图像非刚性配准  被引量:1

Non-rigid Registration of Tissue Section Images Based on Local Feature Projective Transformation

在线阅读下载全文

作  者:赖明珠 段志鸣 LAI Ming-zhu;DUAN Zhi-ming(School of Mathematics and Statistics,Hainan Normal University,Haikou 571158,China;Key Laboratory of Data Science and Intelligence Education,Ministry of Education,Hainan Normal University,Haikou 571158,China)

机构地区:[1]海南师范大学数学与统计学院,海口571158 [2]海南师范大学数据科学与智慧教育教育部重点实验室,海口571158

出  处:《科学技术与工程》2022年第29期12954-12962,共9页Science Technology and Engineering

基  金:国家自然科学基金地区项目(61961015);机器人技术与系统国家重点实验室开放基金(SKLRS-2022-KF-17)。

摘  要:针对组织切片图像配准问题,研究一种以局部特征射影变换配准方法为基础的全局非刚性配准方法以获得更好的匹配效果。首先,采用空域增强与频域增强结合的方法对图像进行预处理,应用匹配滤波突出组织四周的轮廓特征;其次,提取处理后的图像的尺度不变特征转换(scale-invariant feature transform, SIFT)特征并进行初步的匹配,根据匹配的特征点的坐标通过随机抽样一致(random sample consensus, RANSAC)方法计算两幅图像之间的射影变换矩阵参数并进一步剔除离群点,该矩阵可用于全局配准;最后,同样根据RANSAC方法提取出的特征点采用K近邻方法对图像进行区域划分,针对不同局部区域单独求解射影变换矩阵,并与全局配准矩阵进行比较筛选得到组织切片全局非刚性配准模型。实验结果表明对于不同的组织切片图像,局部射影变换配准的方法基本都可以提高配准的准确率,但对于局部变形较小的图像对,局部射影配准对配准精度的提高有限。Aiming at the problem of tissue section images registration,a global non-rigid registration method based on local feature projective transformation was studied to obtain better matching effect.Firstly,the spatial domain enhancement and frequency domain enhancement were combined to preprocess the image,and the contour features around the tissue were highlighted by matching filtering.Secondly,the scale-invariant feature transform(SIFT)features of the processed image were extracted and preliminarily matched.According to the coordinates of the matched feature points,the projective transformation matrix parameters between the two images were calculated by random sample consensus(RANSAC)method,and the outliers were further removed.The matrix can be used for global registration.Thirdly,according to the feature points extracted by RANSAC method,the K-nearest neighbor method was used for image region divided,and projective registration matrix was solved for different local regions separately.Compared with the global registration matrix,the global non-rigid registration model of tissue section images was obtained.The experimental results show that for different tissue section images,the local projective transformation registration method can basically improve the registration accuracy,but for the image pairs with small local deformation,the improvement of the registration accuracy of the local projective registration is limited.

关 键 词:图像配准 射影变换 非刚性配准 特征提取 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象